
A Lightweight Policy Enforcement System for Resource Protection and Management
in the SDN-based Cloud ?

Xue Lenga, Kaiyu Houb, Yan Chena,b,∗, Kai Bua, Libin Songc, You Lib

aCollege of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
bDepartment of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA

cTuSimple, San Diego, CA 92122, USA

Abstract

SDN-based cloud adopts Software-defined Networking (SDN) to provide network services to the cloud, which allows
more flexibility in network management. Meanwhile, the SDN controller provides users and administrators with various
APIs to access and manage network resources. However, unauthorized requests, which are either sent from unregistered
users or containing malicious operations, cannot be completely defended. Moreover, the correctness of network configu-
ration in the SDN-based cloud cannot be guaranteed. In this paper, we propose SDNKeeper, a generic and fine-grained
policy enforcement system for the SDN-based cloud, which can defend against unauthorized attacks and avoid network
resource misconfiguration. Besides, a policy language is designed for administrators to define policies based on the
attributes of the requester, resource, and environment. These policies will take effect when there are requests accessing
the SDN controller via Northbound Interface (NBI). Specifically, SDNKeeper can block unauthorized network access
requests outside the controller to protect the resources inside. Compared to other traditional policy-based access control
systems, SDNKeeper is application-transparent and lightweight, which makes it easy to implement, deploy, and recon-
figure at runtime. Based on the correctness proof of system design and the prototype implementation and evaluation,
we conclude that SDNKeeper achieves accurate and efficient access control with insignificant throughput degradation
and computational overhead.

Keywords: Software-defined Networking, SDN-based Cloud, Network Management, Access Control

1. Introduction

Combining the programmability of Software-defined Net-
working (SDN) [2] and elasticity of the cloud, SDN-based
cloud as a new paradigm, provides a more flexible and
convenient way to control and manage network resources.
These advantages make SDN-based cloud have a broad
application prospects. The global cloud service providers
like Microsoft Azure [3, 4], IBM [5] and Google [6] are all
leading to use SDN in their cloud network architectures.
What’s more, the Cloud Data Center and Carrier Net-
works, such as CloudFabric [7] developed by Huawei and
NovoDC [8] developed by China Mobile, also adopt SDN-
based Cloud. The Synergy Research Group [9] shows the

?This work is supported in part by National Key R&D Pro-
gram of China (2017YFB0801703), and in part by the Key Research
and Development Program of Zhejiang Province (2018C01088). A
preliminary version of this manuscript has been published in 2018
IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), (Banff, Alberta, Canada, June 4-6, 2018) as a regular
paper [1].

∗Corresponding author
Email addresses: lengxue_2015@outlook.com (Xue Leng),

kyhou@u.northwestern.edu (Kaiyu Hou), ychen@northwestern.edu
(Yan Chen), kaibu@zju.edu.cn (Kai Bu), slbthu@gmail.com
(Libin Song), you.li@u.northwestern.edu (You Li)

Cloud Application

Cloud Platform

(a)

Application Plane Application Plane

(b) (c)

SDNKeeperNBI

Plugin Northbound Interface (NBI)(Data Plane)
Network Devices

SDN Controller
(Control Plane)

Figure 1: Architecture of SDN-based cloud, as well as the ap-
plication scenario of SDNKeeper.

global cloud infrastructure service revenue has reached $12
billion in the third quarter of 2017. And the International
Data Corporation [10] predicts that the worldwide mar-
ket of the SDN-based Cloud Data Center will reach $12.5
billion by 2020.

The abstract architecture of SDN-based cloud is de-
picted in Fig. 1 (a). The SDN controller is the core com-
ponent, providing network services for upper layer appli-
cations and managing the fundamental network resources.
Due to the combination of SDN and the cloud, SDN-based
cloud can serve more users with a wealth of services than

Preprint submitted to Computer Networks June 21, 2019

http://iwqos2018.ieee-iwqos.org/files/2018/05/SDNKeeper.pdf

SDN, and also manage network resources more flexibly
than cloud. Therefore, there are two aspects that need
to be considered, one is effectively protecting network re-
sources from users’ malicious requests, and the other is
flexibly managing various network resources.

Since the advent of SDN, there has been a lot of excel-
lent research focusing on the security of SDN from differ-
ent angles. To protect the SDN controller, works [11, 12]
adopt user authentication to block unregistered users. But
these methods would be useless if the legal user is com-
promised to execute malicious operations with his verified
identity. Works [13, 14, 15, 16] perform access control on
either the southbound interface or the plugins inside the
controller, both of which can not obtain the intention of
users intuitively. Works [17, 18] redesign the northbound
interface (NBI) to secure the SDN controller, but cannot
control user behavior at the attribute level. Based on the
current research, securing SDN network at a fine-grained
level and managing resources in a uniform manner still
have not been solved well.

To address the remaining problems mentioned above,
in this paper, we propose a fine-grained policy enforcement
system, SDNKeeper, to protect and manage network re-
sources in the SDN-based cloud. According to the archi-
tecture in Fig. 1 (c), SDNKeeper is at the top of the SDN
controller to filter out the malicious requests at the NBI
before they invade the controller resources and network
resources. Performing access control on NBI can not only
reserve the high-level abstraction information from users
and upper layer applications, but also block the illegal ac-
cess requests outside the controller. Hence, the precious
controller resources can be used to process the necessary
requests.

In order to make better use of SDN, various plugins1

are developed. These plugins provide a large number of
APIs for upper layer applications. Thus, managing these
APIs in a unified manner, as well as effectively verifying
the legitimacy of access requests is challenging. What’s
more, to reduce the occurrence of human errors, it’s nec-
essary to provide a convenient way for administrators to
manage the resources. While designing a friendly and ef-
fective way to interact is also a challenge. In the process
of designing and implementing SDNKeeper, we overcome
the challenges mentioned above.

SDNKeeper performs access control on NBI based on
the policies defined by administrators. In order to provide
administrators with a convenient way to express their in-
tentions to protect and manage resources, we design a pol-
icy language with a readable and operable format, which
can narrow down to any specific attribute of the requests
and resources. A policy interpreter is designed to parse
these policies into a controller-processable format and then
issue them to the data store. After a request has arrived

1A plugin is a project that is located in controller and provides
specific functions for upper level applications.

at the controller, permission engine will check its legiti-
macy against the policies issued previously. The benign
requests will continue to be processed by the controller,
while the illegal ones will be rejected by the policies and
then blocked outside the controller. In summary, all access
control strategies for protecting and managing resources
can be expressed in our policy language and take effect in
our system.

For this work, we made the following contributions.

• We propose a generic policy enforcement system on
SDN controller to protect and manage network re-
sources in SDN-based cloud by monitoring the access
requests.

• We design a fine-grained policy language for adminis-
trators to define management policies, realizing cen-
tralized protection and management of resources.

• We adopt formal methods to prove the design cor-
rectness of SDNKeeper by constructing the system
model and checking the critical properties.

• We implement SDNKeeper with the feature of hot-
update, to be specific, it means policy hot-update.
Administrators can update policies on the fly and
the modified policies will take effect to subsequent
requests soon after.

• We evaluate the performance of SDNKeeper with
three metrics: effectiveness, latency and throughput,
and the results show that SDNKeeper can accurately
intercept illegal access requests with minor compu-
tational overhead.

The rest of paper is structured as follows. First, re-
search background (Section 2.1) and related work (Section
2.2) are presented. Then, an overview of SDNKeeper is
described in Section 3, including application scenarios and
the architecture of SDNKeeper. In Section 4 and Section
5, we illustrate the design details of policies and permis-
sion engine. Then Section 6 proves the correctness of the
system design. Finally, we implement and evaluate the
SDNKeeper prototype in Section 7, and conclude the pa-
per in Section 8.

2. Background and Related Work

2.1. Background

Since the birth of SDN, academia and industry have
invested a lot of energy in research. Fortunately, by virtue
of unique advantages of programmability and centralized
control, SDN has been widely used in various scenarios,
such as home networking ([19, 20]), enterprise networking
([21]), telecommunication networking ([22, 23]) and data
center/cloud networking ([24, 25, 26]). The emergence of
SDN has brought new ideas to solve the inherent problems
in these scenarios, such as increased management complex-
ity, complex deployment of solutions and high cost for new
feature insertion.

2

Figure 2: The evolution of Northbound Interface.

In large-scale networking, the resource management as
well as the network creation and configuration completely
rely on network administrators, so that human errors are
inevitable. When the administrator configures the net-
work, he needs to always keep in mind the commands and
parameters which are configured previously. With a slight
negligence, networks that need to be isolated could com-
municate with each other. Sometimes these man-made
configuration errors are hard to be aware until alerts are
received from physical network devices or users. What’s
more, locating the root cause of network misbehavior is
also a challenging work. Under this circumstance, a tool
for assisting in managing network resources becomes im-
portant and necessary for network administrators.

Besides these inherent drawbacks, when adopting SDN
to provide fundamental network services in large-scale sce-
narios such as cloud, a series of new issues will arise. First,
the registered user is compromised to issue malicious re-
quests to the SDN controller. Second, the requests are sent
correctly, but the content could have been tampered with
during transmission. Finally, attackers can send malicious
requests to the SDN controller by invoking the NBI ob-
tained by other means. More details of these issues will be
demonstrated in Section 3.2. Without access control and
verification mechanism, SDN controller may execute harm-
ful requests and the network will be paralyzed at worst.
Since access requests are passed from cloud to the SDN
controller via NBI, the best way to protect resources is to
perform access control on the NBI. As depicted in Fig. 2,
the evolution of NBI has gone through three stages [27].
As the focus moves up, more and more specific plugins are
integrated into the controller and eventually become black
boxes. Due to lack of internal details, performing access
control inside these plugins is not advisable. Thus, per-
forming access control on NBI is a suitable design, which
adapts to the evolution of NBI and makes the system com-
patible.

2.2. Related Work

We divide the related work into the following cate-
gories, traditional access control, access control in SDN,
access control in cloud, policy-based work, and policy lan-
guage, and then compare our work to these work from
above five aspects.

Traditional Access Control. Many mature tradi-
tional AAA (Authentication, Authorization, and Account-
ing) protocols are widely applied to perform the access
control on the users’ requests. For example, RADIUS (Re-
mote Authentication Dial-In User Service) [28] is a net-
working protocol, which provides centralized AAA man-
agement, and Diameter protocol [29] extends the RADIUS
by adding new commands and attributes. However, RA-
DIUS does not support attribute addressed policies. Sim-
ilarly, although Diameter provides the ability of attribute-
based control, most of Diameter commands and attributes
are predefined, which makes Diameter do not meet the
requirement of resource management in the SDN-based
cloud.

Access Control in SDN. Most of research are car-
ried out around the architecture of SDN. Works [13, 14, 15]
perform access control on the southbound interface and
the data plane. Another work SDNShield [16] performs
access control on the plugins inside the controller by mod-
ifying plugins’ codes. However, due to lack of the inten-
tion of users, these work can not control user behavior.
Works [30, 31, 17, 18] design new controller architectures
and APIs to prevent malicious operations, which weaken
the applicability and flexibility of the controller. Another
related concept is Access Control List (ACL) in network
field, PGA[32], FlowGuard[33] are designed based on ACL.
These works are able to control packet routing in the exist-
ing network, but can not control the network configuration
in the SDN-based cloud, as well as the requests accessing
the controller via the NBI.

There are a few works focusing on the northbound of
SDN. AAA [11], a project of OpenDaylight controller [34],
can realize basic user authentication and authorization.
The prototype of SDNKeeper is also implemented in the
OpenDaylight controller. Comparing to SDNKeeper, Flu-
orine, the latest version of AAA, can filter access requests
at the coarse user granularity, while unable to make deci-
sions according to the attributes of the requester, resource,
and environment. For instance, AAA can allow a user
Bob to create a resource “network” based on his identity
but cannot make the decision in a finer attribute granu-
larity, like allowing the user Bob to create a network of
type VLAN before December 31, 2018. Similarly, in or-
der to perform role based access control, works [12, 17, 18]
develop a more secure authentication mechanism to ver-
ify user’s identity. But these works will loss effectiveness if
the registered users are compromised to perform malicious
operations.

Access Control in Cloud. Prior access control mech-
anisms in cloud [35, 36, 37, 38, 39, 40] are in allusion to
protect data security and user privacy, but do not pro-
vide effective protection for SDN. However, works [41, 42]
are based on SDN, which can control the network and de-
tect attacks within and between clouds, but they do not
consider security issues from the perspective of the SDN
controller.

Policy-based Work. Policy-based methods are widely

3

applied, and some of them are proposed for traditional net-
work [43, 44, 45], which are not suitable for SDN, since the
managed resources and the application scenarios are differ-
ent. However, after the emergence of SDN, many policy-
based frameworks are designed to manage and secure the
SDN network ([46, 47, 48]). They either (1) defend against
covert channel attack by resolving rule conflicts and pre-
venting the conflicts installed in the SDN data plane [46],
or (2) design security policies to secure end hosts and de-
fend against attacks related to the data flow and path in
the data plane [48], or (3) control the access time to the
network services and control the access to the switches
based on users’ roles [47]. Compared to these papers, our
work focuses on protecting and managing resources in the
controller, and performs fine-grained access control on the
access requests based on the attributes of the requester,
resource, and environment.

Policy Language. Due to the expansion of scale
and increased management complexity, a variety of policy-
driven languages expressing the intention of administra-
tors are proposed to manage and secure the network [49].
These languages focus on either network management or
security management, for instance, PCIM [50] as an object-
oriented information model can specify various policies for
traditional networks in general, such as configuration poli-
cies, installation policies, error and event policies, and se-
curity policies, etc. XACML [51] is also a general attribute-
based access control system for evaluating access requests.
Compared to these traditional works, in the scenario of the
SDN-based cloud, we simplify the specification of policies,
which is easy to grasp and use for administrators, and de-
sign a policy language with considering the specific proper-
ties of SDN, such as centralized resource management and
programmability of the network. Besides, SDNKeeper can
work as a plugin inside the SDN controller, which makes it
easy to implement and deploy, as well as compatible with
other modules.

3. SDNKeeper Overview

In this section, we first describe two application sce-
narios of SDNKeeper, following by a bird’s-eye view of
the whole system and a macroscopic description of the
core components. To better understand the mechanism of
SDNKeeper, we will demonstrate the workflow within the
architecture shown in Fig. 3.

3.1. Threat Model

In our threat model, the attacker is a malicious user
with authenticated identity. We assume the attacker has
two ways to access the SDN controller. One is sending re-
quests to the SDN controller via applications. The other
is accessing the SDN controller directly through the URI,
as shown in Fig.3. Besides, there is another type of at-
tacker who can hijack and tamper with requests sent from
applications to the SDN controller. The goal of such an at-
tacker is to fetch the information beyond his scope to infer

Figure 3: Architecture and workflow of SDNKeeper.

the global status based on this information and attempt
to modify or delete the resources outside his scope.

To concentrate on demonstrating the core design of
SDNKeeper and to clarify our work, we make two assump-
tions here: 1) SDN controller, which performs permis-
sion checking, is safe. That means the controller is se-
cure enough and running correctly with no bugs. We are
confident because a large body of research work and trou-
bleshooting techniques ([52, 53, 54]) make the SDN con-
troller safer and more robust. Therefore, our work mainly
focuses on the legitimacy of the access requests and the se-
curity of resources. 2) The administrator, who specifies
policies, is credible. The administrator has the highest
authority such that he can configure the whole network by
making policies and executing commands. Hence, attack-
ing network by hijacking administrators is not within the
scope of this paper.

3.2. Application Scenario

Based on the threat model, we summarize two appli-
cation scenarios of SDNKeeper as follows. Here we regard
resources as all plugins inside the controller, as well as net-
work resources managed by the controller, including flow
tables, statistics and devices, etc.

Scenario 1: Protecting resources. The requests
accessing resources can be divided into three categories as
described in Section 2.1, also shown in Fig. 3. Request
(1) comes from the registered user and application, which
carries illegal information. Request (2) is also sent from
benign user and application, but it was tampered with
halfway. And request (3) is sent directly to the controller
by the registered user. All these requests are dangerous
to the controller and put the resources at risk of being
tampered with. SDNKeeper is designed to intercept these
malicious requests.

Scenario 2: Managing resources. There are vari-
ous plugins inside the controller providing a large number
of APIs for upper layer applications, as depicted in Fig. 1

4

(b). SDNKeeper provides a unified entrance to manage re-
sources, such as controlling which resource can be deleted
or which resource can be queried in a fine-grained man-
ner. Administrators just need to insert specific policies in
SDNKeeper to achieve the goal of managing resources in
the controller and the data plane.

3.3. Architecture of SDNKeeper

In the SDN-based cloud, the fundamental network ser-
vice is provided by SDN. Taking a typical application sce-
nario as an example, as depicted in Fig. 1, cloud com-
municates with SDN controller through REST API (i.e.
NBI) provided by plugins inside the controller. Mean-
while, REST Service, as the unique northbound channel
in the SDN controller, processes all requests sent from
cloud. Hence, our key idea of protecting and managing
network resources in the SDN-based cloud is to perform
access control at the NBI level.

SDNKeeper is an attribute-based access control sys-
tem, which can perform access control based on the at-
tributes of the requester, resource, and environment. For
instance, attributes can be user role, user name, resource
name, resource type, requested action, and legal operating
time, etc. Since SDNKeeper runs at the northbound of
the controller, all illegal requests from northbound will be
blocked outside the controller. However, it cannot be ap-
plied to prevent malicious messages from the southbound.

In general, SDNKeeper as a fine-grained policy enforce-
ment system provides real-time protection and permission
checking for the SDN controller. Specifically, SDNKeeper
allows administrators to design policies based on the global
view of the whole network. No matter which application
the access request comes from, it will be rejected if it vio-
lates the policies.

In our design, SDNKeeper mainly consists of two parts,
policy interpreter and permission engine. After the ad-
ministrator defines policies in policy language based on
the global view and security demands, these policies will
be issued to the controller. Then, policy interpreter
will parse and transform the semantic policies into tree-
structured data and store them in the data store of the
controller.

Permission engine is the core component, which en-
forces permission checking based on the policies defined
by the administrator. SDNKeeper can be regarded as a
filter between the SDN controller and upper applications.
During the lifetime of the controller, permission engine
keeps mediating all access requests at the NBI level con-
tinuously. Permission engine also supports runtime policy
modification, providing the flexibility of access control.

The complete access control workflow of SDNKeeper is
shown in Fig. 3 and described as follows.

1. The administrator first defines the policies according
to current global view and security demands (step
1©), and then issues these policies to the controller
(step 2©).

2. The policy interpreter parses and transforms the se-
mantic policies into formalized structural data, which
are controller-identifiable and SDNKeeper-processable.
Parsed policies are stored in the data store (step 3©).

3. When the controller receives a REST Request (step
4©), the filter in REST Service will intercept and
send this request to permission engine (step 5©).

4. Permission engine checks the required operation with
policies stored in the data store (step 6©). If the re-
quest violates the policy, permission engine will re-
ject it along with response massages.

Generally, in the original SDN system, all requests sent
from various applications are directly loaded into the con-
troller without checking for the legitimacy and correctness
of the requests at the attribute level. Thus, malicious re-
quests can strike the system without any obstruction. Al-
though several security inspection techniques ([55, 56, 57])
are presented for the safety of applications, they can only
work offline and are unable to ensure the legality of the
requests sent to a running plugin. In SDNKeeper, the con-
troller can not only avoid infringement caused by malicious
requests, but also save precious resources to efficiently pro-
cess benign requests and provide real-time protection for
the system. We will describe the design of policies, and
the details of policy interpreter and permission engine in
Section 4 and Section 5, respectively.

4. Policy Language and Policy Design

In this section, we will expound what the policy is,
how to manage policies in SDNKeeper and how to write a
policy for the administrator.

4.1. REST Request

REST API2 is the most common NBI for users to ac-
cess network resources in SDN. Almost all SDN controllers,
like OpenDaylight [34], Floodlight [58], ONOS [59] and
Ryu [60], support REST API, and recommend or require
using REST Request to access network resources at the
northbound of SDN. A REST Request consists of four
main parts as shown below.

1. Method defines the HTTP verbs a requester intends
to perform. The most common HTTP verbs are
POST, GET, PUT and DELETE, which correspond to cre-
ate, read, update and delete operations, respectively.

2. URI identifies the network resource provided by the
controller. Typically, plugins register their URIs in
the REST Service. Taking the RESTConf [61], the
REST Service in the OpenDaylight controller, for

2REST API: REpresentational State Transfer Application
Programming Interface, which allows the requester to access and ma-
nipulate resources using a uniform, stateless operation over HTTP.

5

an example, the plugin should first resister the URIs,
which are used to identify its resources, to the REST-
Conf. Then, users can query their resources by com-
bining the GET verb and the URI registered previ-
ously.

3. Headers carry a list of information in the HTTP
request, such as the content type of this request and
the authorization token of the requester.

4. If a requester requests to create (POST), update (PUT)
or delete (DELETE) a resource, a JSON body with de-
tailed attributes of this resource should be included.

With the information carried in the REST request, a
policy can be created to perform fine-grained access con-
trol on the requests, which are sent by users to access net-
work resources in the controller and the data plane. The
following is a typical REST Request example.

A Typical REST Request Example

1) Method: POST (POST/GET/PUT/DELETE)

2) URI: https://<controller-ip>:<port>/networks/

3) Headers: {

Content-Type : application/json,

Authorization : {

Username : Alice, Password : *** },

... }

4) Body (optional): {

network : {

name : alice-network,

tenant_id : 9bacb3c5d39d41a7951...,

subnets : [],

network_type : vlan,

... }}

4.2. Policy

A policy in SDNKeeper is designed to determine whether
to approve or decline a REST request. In order to de-
fend against unauthorized requests, the policy needs to
clearly describe the details of the requester, requested re-
source and environment. Thus, we formulate a resource
access control policy (P) into three terms: Subject, Ob-
ject and Environment, which can cover all the information
contained in a REST Request.

P(S,O,E) := (ATTR(S) op ATTR(O) op ATTR(E))

• Subject (S) is a requester, usually means a user who
issues access requests to the controller (Headers: Au-
thorization). Its attributes (ATTR) are the informa-
tion related to the users, like username and role type.

• Object (O) is the requested resource provided by the
controller, such as networks, firewalls and routers,
etc. (URI). All the context in the Body part of the
REST request are the attributes of this Object.

• The system Environment (E) is also an important
aspect we should consider. For example, date is a
crucial environment attribute in the lease of a net-
work resource. A user cannot use resources after the
lease expires.

We predefined a data structure to fetch the attributes
of Subject, Object and Environment:

predefined

: ’subject.’ (’role’ | ’user’)

| ’action.’ (’uri’ | ’query’ | ’method’)

| ’environment.’ (’date’ | ’time’ | ’week’)

For instance, Subject’s attributes such as role and user-
name can be obtained in the format like subject.role and
subject.user. For Object, action attributes can be fetched
in the format like action.uri and action.method. Similarly,
query string for GET verb can be obtained by using ac-
tion.query. As the same, environment data structure rep-
resents the system date and time in the controller.

In addition, we can refer to JsonPath syntax to fetch
the attributes in the Body part:

jsonpath : ’$.’ string (’.’ string)*

For example, $.network.type can get the type of the net-
work. Therefore, with our predefined data structure, net-
work administrators can get any information from the REST
request and customize arbitrary access control policies ac-
cording to our predefined data structure.

Each policy is a set of assertion expressions combined
with the iteration of if-statements and AND/OR opera-
tions, and will eventually return a value of ACCEPT or
REJECT :

policy : policy_name ’{’ statement ’}’

statement : ’ACCEPT’ | ’REJECT’ | if_state

if_state : ’if (’ expr ’)’ statement

(’else’ statement)?

Below, we show an example of a policy which follows
the policy language syntax. This policy is called “Bob can
post vlan”. With the first if-statement, a REST request
from user Bob will hit this policy. Under the assertions in
the second if-statement, Bob can create a network, if the
type of the network is VLAN.

A Policy

1 Bob_can_post_vlan{

2 if (subject.user == ’Bob’) {

3 if (action.uri REG ’/networks/’ &&

4 action.method == ’POST’ &&

5 $.network.type == ’vlan’) {

6 ACCEPT }}}

6

4.3. Policy Hierarchy

SDNKeeper classifies the policies into two categories,
global policy and local policy:

policySet : globalSet? localSet? ;

globalSet : ’GLOBAL_POLICY {’ policy* ’}’

localSet : ’LOCAL_POLICY {’ localPolicy* ’}’

localPolicy : role. (user)? ’{’ policy* ’}’

• Global policies are intended for all requests. When
a request comes in, it will be checked against all the
global policies.

• Local policies are only intended for individual user
group and user, which have user-related attributes:
role and username. When a request from a certain
user comes in, only the relevant local policies with
the matching role and username will be checked.

There are two reasons for designing these two separated
policy sets. One is for performance. Permission engine
only needs to check global policies and relevant local po-
lices. This will greatly reduce the policy checking burden
when the policy set is large. And the other more important
reason is for expressiveness and simplicity. Administrators
can make group policies to manage requests in batches ac-
cording to specific requirements, as well as make individual
policies for particular users to control their resources.

A Policy File

1 GLOBAL_POLICY {

2 system_update {

3 if (environment.time > 1am &&

4 environment.time < 6am) {

5 REJECT }}}

6 LOCAL_POLICY {

7 user {

8 user_can_get_on_monday {

9 if (action.method == ’GET’) {

10 if (environment.weekday == ’mon’) {

11 ACCEPT }}}}

12 user.Alice {

13 alice_cannot_delete_firewall {

14 if (action.uri REG ’/firewalls/’) {

15 if (action.method == ’DELETE’) {

16 REJECT }

17 else {

18 ACCEPT }}}

19 ... }}

In order to have an intuitive understanding, we provide
an example of a policy file as shown above, including global
policies and local policies. For user “Alice” with “user”
role, her REST requests will be processed by global policy

system update, local policy user can get on monday and
local policy alice cannot delete firewall. However, for user
“Bob” with “user” role, his requests will be checked with
only two policies, global policy system update and local
policy user can get on monday.

SDNKeeper’s policy language syntax is summarized in
Appendix Appendix A.

4.4. Policy Generation

To make SDNKeeper work correctly in the SDN-based
cloud, there are only two steps for generating policies.
First, the REST APIs and related attributes of the re-
quester and resources should be provided to the network
administrator. Second, the administrator defines access
control policies based on these attributes and following
the description in Section 4. Since these policies are Json-
based rules, it is easy to generate policies just follow the
grammar of Json.

Before SDNKeeper is running, administrators first need
to summarize the characteristics of attacks, security de-
mands and system restrictions, such as pointing out the
resources which can be accessed by users, specifying the
resource attributes which need to be checked, and setting
an available service time, etc. These characteristics will
be further used to create global policies and local policies.
When a new user joins, administrators only need to assign
this user with a corresponding role (new or existed). The
authority of this user will follow the policies described by
the predefined global and local policies within this role. In
addition, the administrator can also create specific policies
for the particular user by adding a new local policy for this
user on the fly.

5. Policy Interpreter and Permission Engine

In this section, details of policy interpreter and per-
mission engine are introduced, as well as the mechanism
of REST request processing and permission checking.

5.1. Policy Interpreter

The human-language based policies need to be trans-
lated into the computer-processable data structure. In the
policy interpreter, abstract policies issued by the admin-
istrator are parsed into a semantic tree, which is loaded
into the controller’s memory. Intuitively, Fig. 4 shows
the semantic tree of a global policy set. In the semantic
tree, each leaf node represents an attribute or a comparing
value and other nodes represent logical operators. Thus,
each expression can be expressed by a subtree. After re-
cursively evaluating the left children and right children,
we can get the value of the root node, i.e., the result of
permission checking.

Matching in the semantic tree is very fast. Our eval-
uation in Section 7.2 shows that the matching time will
not be significantly affected after we quadruple the total
number of policies.

7

Figure 4: Semantic tree of global policy.

5.2. Permission Engine

Each request issued by users will be checked by the
permission engine. Generally speaking, permission engine
1) extracts attributes of request, such as user, uri and
method, 2) evaluates this request by checking it against
policies in the data store, and 3) finally makes a decision on
approving or declining this request. We highlight several
issues in permission engine design as follows.

Policy Conflict. Because of the intersection of dif-
ferent policies, a REST request may be approved by one
matched policy but rejected by another matched policy,
which brings a policy conflict. As shown below, if user
Alice requests to GET the network resource. Her demand
will be approved by all can get policy in global policy set.
However, Alice does not have the permission to access the
network resource as described in local policy net reject alice.
Therefore, it will be inaccurate if we return the decision
once the policy is matched.

A Policy File with Policy Conflicts

1 GLOBAL_POLICY {

2 all_can_get {

3 if (action.method == ’GET’) {

4 ACCEPT }}}

5 LOCAL_POLICY {

6 user.Alice {

7 net_reject_alice {

8 if (action.uri == ’/networks/’) {

9 REJECT }}}}

For the sake of security, we introduce full match strat-
egy in the permission checking process. A REST request
is checked in the order of global policies, group local poli-
cies, and user local policies. If a matched policy returns
the checking result of “REJECT”, permission engine will
decline this request immediately. If the checking result of
the matched policy is “ACCEPT”, the permission check-
ing process will go on until all policies have been checked
or get the result of “REJECT”. After all policies have
been checked and matched an “ACCEPT” decision, this

request should be approved. If no policy is matched by
this request, this request will be declined. The complete
permission checking process is illustrated in Algorithm 1.

Algorithm 1: Permission Checking

Input : request
Output: ACCEPT or REJECT

1 approved← false
2 policy set← {Global, Local[role], Local[role][user]}
3 for policy in policy set do
4 if request matches policy then
5 if policy.eval(request) == REJECT then
6 return REJECT
7 else approved← true

8 If approved == true return ACCEPT
9 return REJECT ;

Filter Based. Permission engine acts as a filter be-
tween the application plane and the control plane. There-
fore, illegal requests will be rejected before reaching the
relevant modules inside the controller, which will not oc-
cupy the computational resources of the controller. Filter
based design can also bring benefits to deployment. Typi-
cally, controllers have a REST Service module for receiving
and distributing REST requests. It will only need a few
code changes when adding a new REST filter to the REST
Service module. In most mainstream SDN controllers, like
OpenDaylight controller and ONOS controller, we can en-
able SDNKeeper in them by adding several dependencies
to the configuration files.

Runtime Configuration. Since administrators may
need to refine policies dynamically according to the se-
curity and management demands, runtime configuration
is an important feature for permission engine. In SDN-
Keeper, administrators are allowed to access and update
the policies in the data store, where a listener is registered,
at any time. Once an insert/delete/update operation oc-
curs, the listener will send a notification to the permission
engine. And the permission engine will update the policies
in the memory cache, so that subsequent requests will be
checked by new policies.

6. Correctness Proof of SDNKeeper

SDNKeeper is the first protective barrier for network
control and management, the correctness of its system de-
sign is critical and need to be proved and guaranteed. In
the case that the system follows the designed workflow,
returns the correct checking results, and is able to pro-
cess requests continuously, we can confirm that the design
of the system is correct. In this section, we will illus-
trate the correctness of the system design by modeling the
whole system with Formal Methods (FM) and checking
the necessary properties. In order to avoid missing some
points which cannot be covered by the experiments, prov-
ing the correctness of the system design is necessary. On

8

the premise of ensuring the correctness of the design, we
will show the implementation correctness by evaluating the
whole system with sufficient experiments.
6.1. System Modeling

We first build a system model consisting of Access Con-
trol Filter and Permission Engine as shown in Fig. 5.
Each sub-model is a finite state machine (FSM) with sev-
eral states and transitions.

6.1.1. Access Control Filter (ACF)

The Access Control Filter FSM has 5 states and 6 tran-
sitions. ACF Idle state is the initial state and ACF Inter-
cepted state represents that there is a new request to access
the controller. After sending the request to the Permission
Engine, Access Control Filter FSM will go to ACF Waiting
state. Depending on the checking result received, the Ac-
cess Control Filter FSM will reach the ACF Received A-
C Processing state if the checking result received is accept,
and will transfer to the ACF Received REJ Block state if
the checking result received is reject.

6.1.2. Permission Engine (PE)

The Permission Engine FSM has 4 states and 11 tran-
sitions. Similarly, PE Idle state is the initial state. After
receiving requests, the Permission Engine FSM will go
to PE Checking Global Policy state to check global pol-
icy set. Following that, the Permission Engine FSM will
reach PE Checking Local Policy state to check all local
policies after all global policies have been checked with.
In this progress, once there are matched policies with the
decision of reject, the checking result will be returned
via the Channel PA, at the same time the checking pro-
cess in the PE is over. Otherwise, no matter the check-
ing result is accept or unmatch, which means the request
and policy do not match, the checking process will con-
tinue until all policies have been examined and reach the
PE Check All Policies state.

Policy Interpreter is responsible for parsing high-level
abstract policies into tree structure policies and pushing
them into the data store. It plays a role of providing poli-
cies for permission checking in the whole system, and has
no interactions with above two core components Access
Control Filter and Permission Engine. So it does not im-
pact the correctness analysis of the system design. There-
fore, the model of Policy Interpreter can be omitted.

6.2. Model Checking

We choose NuSMV, a state-of-the-art symbolic model
checker, to perform model checking. Its latest version,
NuSMV2 [62], is based on the powerful satisfiability (SAT)
engine to achieve good scalability and efficiency. Users can
specify synchronous or asynchronous finite state models
in an intuitive fashion. The properties to be checked can
be described as linear temporal logic (LTL) specifications.
Given a certain number of rounds, NuSMV model checker

either provides a counterexample to the property, or con-
cludes that the property is satisfied by the corresponding
model. Table 1 lists the LTL operators we used in the
model checking.

Table 1: LTL operators used in model checking.

Operator Intuitive meaning

G globally

F eventually

O once

X next state

Y previous state

In order to prove the correctness of the system design,
we check all critical properties based on the model built
above. The key point is the selection of properties. The
main function of Access Control Filter is intercepting ac-
cess requests and sending them to Permission Engine, then
waiting to handle the request until receiving the check-
ing result. Thus, the properties of Access Control Filter
should satisfy this workflow and is able to make the system
process requests uninterruptedly. Since the workflow of
Permission Engine is more complex, its properties should
not only respect its workflow, but also describe its key
features to ensure the Permission Engine work smoothly.
The detailed descriptions of each property are illustrated
as follows and the corresponding formal statements are
shown in Table 2.

Property 1. If ACF FSM is in the ACF Idle state, it will
eventually return to the ACF Idle state.

This property can ensure the Access Control Filter can
come back to its initial state, that is to say, it can process
access requests continuously. It is important for the net-
work in the case of a large number of requests accessing
the controller.

Property 2. ACF FSM must go through ACF Intercepted
state and ACF Waiting state if the ACF FSM gets the
checking result from PE.

Access Control Filter intercepts access requests first
and is in a waiting state until receiving the checking result
from Permission Engine. This is the normal processing
flow indicating that the Access Control Filter is in a nor-
mal working state.

Property 3. If ACF FSM reaches ACF Waiting state,
ACF Intercepted state must be its last state before that.

Similar to property 2, this property also describes the
workflow of Access Control Filter, but is more precise.
Fine-grained property checking is necessary because we
need to ensure every step of this ACF FSM respects to
the system design.

Property 4. If there is a request coming in, the ACF FSM
must reach either ACF Received AC Processing state or
ACF Received REJ Block state.

9

ACF_Idle ACF_Intercepted ACF_Waiting

ACF_Received_AC_Process

ACF_Received_REJ_Block

acf_request_come acf_send_request_to_PE

checking_result = accept

checking_result = reject

acf_process_request

acf_process_request

PE_Idle

PE_Checking_Global_Policy PE_Checking_Local_Policy PE_Checked_All_Policies

requ
est_

tran
smis

sion
 = T

RUE

pe_gp_seq >
global_policy_number

pe_lp_seq >
 local_policy_number

pe_checking_gl_result = accept pe_checking_lp_result = accept

pe_checking_gp_result = unmatch pe_checking_lp_result = unmatch

pe_checki
ng_lp_res

ult = rejec
t

pe_che
cking_

gp_res
ult = re

ject

pe_matched_gl_accept = TRUE | pe_matched_lp_accept = TRUE

pe_match
ed_gl_acc

ept = FAL
SE & pe_

matched_
lp_accept

 = FALSE

Access_Control_Filter FSM

Permission_Engine FSM

Channel_AP to transmit requests Channel_PA to transmit checking_result

Figure 5: SDNKeeper system model consisting of Access Control Filter FSM and Permission Engine FSM.

Once there are requests accessing the controller and be-
ing intercepted by the Access Control Filter, the checking
result must be returned, either accept or reject, which
means the request is benign that can be processed further,
and the request is illegal that need be blocked outside the
controller respectively. This property can guarantee every
request is checked by Permission Engine, then processed
based on the checking result.

Property 5. If PE FSM is in the PE Idle state, it will
eventually return to the PE Idle state.

In order to cooperate with Access Control Filter, Per-
mission Engine should also be able to perform access con-
trol on the received requests continuously. No matter how
many requests there are, it can return the checking result
to Access Control Filter and come back to the initial state.

Property 6. For PE FSM, the PE Checking Global Policy
state must be reached before PE Checking Local Policy
state.

Benefit from the design of separated policy set, check-
ing requests achieves high performance, since only global
policies and user-related local policies need to be checked.
What’s more, global policies have higher priorities than lo-
cal policies, thus, all global policies must be checked before
any local policies.

Property 7. For PE FSM, if and only if all policies have
been checked and either “pe matched gp accept = TRUE”
or “pe matched lp accept = TRUE”, the checking result
is set to accept.

To protect the controller effectively in case of policy
conflict, we propose an elaborate design, which accepts a

request if and only if all global policies and user-related
policies have been checked with and the checking result
is accept. This can ensure every request processed by
the controller is benign without being impacted by policy
conflict.

6.3. Discussion

We build system model consisting of two core compo-
nents (Access Control Filter FSM and Permission Engine
FSM) and perform model checking on its critical prop-
erties, which are described formally. Based on the de-
sign principles of SDNKeeper, we propose and check all
function-related properties above, which are important for
making the access control system work correctly and smoo-
thly. As depicted in Fig. 5, there are 17 transitions in
the whole system model, and we run the model checker
for 7 times, each time checks one property, which have
covered all possible situations. The model checking re-
sults show that there are no counterexamples found, which
means these properties are all satisfied. Based on the basic
thought3 of formal methods for proving the correctness of
the system design, we can prove that the design of SDN-
Keeper is correct.

7. Implementation and Evaluation

There are two major components in the prototype of
SDNKeeper: 1) policy interpreter parses semantic poli-
cies into semantic trees, and 2) permission engine per-
forms permission checking on each coming request. In this

3After exhaustively checking all properties for enough times which
cover all possible changes in all states and transitions, we can con-
clude that the system design is correct.

10

Table 2: The formal statement of properties for model checking.

FSM Property Formal Statement

ACF

Pro 1 G ((ACF.state = ACF_Idle & X (ACF.state != ACF_Idle)) -> F (ACF.state = ACF_Idle))

Pro 2
G ((checking_result = ACCEPT | checking_result = REJECT)

-> O (ACF.state = ACF_Intercepted & ACF.state = ACF_Waiting))

Pro 3 G (ACF.state = ACF_Waiting -> Y (ACF.state = ACF_Intercepted))

Pro 4
G (acf_request_come

-> F (ACF.state = ACF_Received_AC_Process | ACF.state = ACF_Received_REJ_Block))

PE

Pro 5 G ((PE.state = PE_Idle & X (PE.state != PE_Idle)) -> F (PE.state = PE_Idle))

Pro 6
G (PE.state = PE_Checking_Global_Policy

-> !O (PE.state = PE_Checking_Local_Policy))

Pro 7

G (check_result = ACCEPT

-> O (pe_matched_gp_accept | pe_matched_lp_accept)

& (pe_gp_seq > global_policy_number | pe_lp_seq > local_policy_number))

section, we first introduce the implementation of these two
components, as well as the implementation of model con-
struction and model checking. Then, we evaluate the per-
formance of SDNKeeper from three metrics: effective-
ness, latency and throughput, and briefly discuss the
results in the end.

7.1. Implementation

We implement SDNKeeper as a plugin of the Open-
Daylight [34] controller, which works as a filter to con-
trol any REST request from upper applications to the
controller, and implement policy interpreter and permis-
sion engine as the controller-independent Java bundles.
Currently, almost all mainstream controllers (OpenDay-
light, ONOS) use REST API in northbound communica-
tion. This enables SDNKeeper to perform access control
on these controllers. Benefit from the lightweight feature
of SDNKeeper, the deployment of the whole system is low
cost, which only needs to embed SDNKeeper into the con-
troller as a feature and assign it with a high priority to
filter REST requests first.

SDNKeeper is an attribute-based access control sys-
tem, in which role is an important attribute of the re-
quester for checking permission and making decisions. Since
a user authentication module (AAA[11]) has already been
developed, we liberate ourselves from repetitive work. Ow-
ing to the filter-based feature, SDNKeeper is compatible

with other projects, so that the permission engine of SDN-
Keeper can be inserted behind AAA, then the checking
progress is based on the authenticated result of AAA.

The two main components and system model checking
are implemented as follows.

7.1.1. Policy Interpreter

Policies defined by administrators are the JSON-based,
human-readable rules. Policy Interpreter compiles these
semantic policies into semantic trees. We implement a CLI
command SDNKeeper:load/reload in Karaf console to load
all semantic policies into the data store of the controller. In
this progress, ANTLR [63], a language recognition tool, is
responsible for reading and parsing semantic policies con-
tinuously, then a registered listener will insert the policy
tree into the data store once a new one is loaded. Finally,
all policies will be stored as a tree, so that the permission
engine just needs to recursively traverse a tree to enforce
a policy.

7.1.2. Permission Engine

Permission Engine is the core component checking REST
requests based on policies defined by administrators. In
the real-world scenario, REST requests sent to the con-
troller are usually highly concurrent. In order to adapt to
this characteristic, we adopt Akka [64] to process multi-
ple requests simultaneously by creating a certain number

11

200 400 600 800 1000

No. of Policy

0

1

2

3

4

5

6

L
at

en
cy

 (
m

s)

(a) Latency - SDNKeeper

GET

POST

PUT

DELETE

All REJECT

GET POST PUT DELETE

Request Method

0

1

2

3

4

5

6

L
at

en
cy

 (
m

s)

(b) Latency - ODL vs SDNKeeper

ODL

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

200 400 600 800 1000

No. of Policy

200

400

600

800

1000

1200

N
o

.
o

f
R

es
p

o
n

ce

(c) Throughput - SDNKeeper

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

2 4 6 8 10

No. of Thread

200

400

600

800

1000

1200

N
o

.
o

f
R

es
p

o
n

ce

(d) Throughput - ODL vs SDNKeeper

ODL

SDNKeeper(ACCEPT)

SDNKeeper(REJECT)

Figure 6: Evaluation Result : (a) latency of SDNKeeper with different numbers of policies, (b) latency between original and
SDNKeeper-enabled OpenDaylight with 1,000 policies, (c) throughput of SDNKeeper per second with different numbers of policies
under 2 threads, (d) throughput between original and SDNKeeper-enabled OpenDaylight with different numbers of threads.

of Actors. Making full use of controller’s computing re-
sources helps us achieve high system performance, i.e., low
processing latency and high processing throughput.

What’s more, request queue and response queue are de-
signed for caching access requests and check results respec-
tively to mitigate the congestion of requests. Policy cache
is designed for accelerating the process of policy match-
ing. With the Policy Data Store Listener in permission
engine, the policy cache can be updated at runtime once
there are policy changes in the data store. And the new
policies will take effect on subsequent requests. In order
to assist the administrator to checkout whether the new
policies are effective, we implement a CLI command SDN-
Keeper:cache, which can be executed in the Karaf console
to get the policies in the cache.

7.1.3. Model Checking

To perform model checking on the whole system, we
first construct system model consisting of two finite state
machines, Access Control Filter FSM and Permission En-
gine FSM. The model has a total of 9 states and 17 tran-
sitions and is built in XML with 500+ lines of code re-
ferred to LTEInspector [65]. Then, we express specifica-
tions in Linear Temporal Logic (LTL), which characterizes
each linear path induced by the finite state machine, and
check the system model against 7 properties with the aid
of NuSMV [62].

7.2. Evaluation

7.2.1. Methodology

We establish the testbed of SDNKeeper on the main-
stream SDN controller OpenDaylight (Intel i7-7700 8x3.6
GHz, 16 GB Memory, 4 CPU cores), and choose Neu-
tron Northbound [66], a component enabling communi-
cation between Opendaylight and Openstack [67], as our
test application. Neutron Northbound provides 30 kinds
of REST APIs, ranging from networking, firewall, QoS to
load balance, with 185 kinds of requests (GET, POST,
PUT, DELETE) and 664 related attributes, which are
enough to evaluate the effectiveness of SDNKeeper.

In our evaluation, users send REST requests to Open-
Daylight through REST API. SDNKeeper performs access

control on these requests at the NBI level. We examine the
check results of those requests in the controller and the re-
sponse received by users to evaluate the performance of
SDNKeeper.

We first evaluate the effectiveness of SDNKeeper, i.e.,
whether SDNKeeper can reject unauthorized requests cor-
rectly. Then, we measure the extra processing latency in-
troduced by SDNKeeper and REST request throughput.
Finally, we evaluate the computational overhead of SDN-
Keeper with different numbers of requests. Both measure-
ments are conducted in the controllers with and without
SDNKeeper. If an illegal request is rejected by SDN-
Keeper, the processing time and resources occupancy would
be largely reduced. Hence, for the sake of fairness, we eval-
uate the performance of SDNKeeper in cases where all de-
cisions are “ACCEPT” and all decisions are “REJECT”.

Table 3: REST API provided in Neutron Northbound

Type # of APIs # of Attributes

Networking 6 220

Firewall 3 83

Security 2 24

VPN 4 104

SFC 4 60

Meter 2 13

QoS 2 31

Load Balance 4 81

BGP VPN 1 22

L2 Gateway 2 26

7.2.2. Effectiveness Evaluation

In order to evaluate the effectiveness of SDNKeeper,
we design test cases corresponding to the three types of
illegal requests mentioned in Section 3.2. Since these il-
legal requests have the same format, we simulate these
requests by sending REST requests uniformly. Table 3
lists all types of REST APIs provided by Neutron. These
APIs are representative to show the correctness of SDN-
Keeper in rejecting the unauthorized access requests in the
SDN-based cloud.

12

When verifying the effectiveness of intercepting unau-
thorized requests, we send two kinds of illegal requests:
1) requests sent to access resources not belonging to the
current user; 2) requests sent to perform extra operations
on the resources owned by the current user. We create
2789 policies in 3 granularities: 30 policies for all kinds of
APIs, 185 policies for all kinds of actions in the API, 664
policies for all kinds of attributes, and 1910 policies for all
possible combinations of two attributes. Based on these
policies, we create benign and illegal access requests. The
benign requests are generated to make the requests able to
pass the permission checking. And illegal requests are gen-
erated by setting incorrect values in some fields to make
them violate one or more policies which need to be checked
with. Thus, when these requests are sent to access the con-
troller, they will be checked with the generated policies. If
the request violates one or more policies, it will be re-
jected and returned to the requester, while if it passes all
policies, it will be further processed by the controller.The
results show that all these illegal requests are rejected by
SDNKeeper.

7.2.3. Latency Evaluation

In SDNKeeper, matching policies and checking permis-
sions may introduce extra delay to the controller when
processing a REST request. We evaluate this delay by
measuring the latency in users from sending a request to
receiving the corresponding response. Three experiments
are performed in this part: 1) latency with different num-
bers of policies shown in Fig. 6 (a), 2) latency between
controllers with and without SDNKeeper shown in Fig. 6
(b), 3) latency with different numbers of requests shown in
Fig. 7 (a). For first two experiments, each test is executed
5 times with 30000 requests.

Fig. 6 (a) illustrates the processing latency with dif-
ferent numbers of policies. As we can see, in all of those
four request categories, almost no latency increase is in-
troduced when we increase the number of policies. The
insignificant computation overhead mainly benefits from
our design of storing policies in the semantic tree. What’s
more, the matching time will not be significantly affected
after increasing the number of policies because of the de-
sign of policy hierarchy, only policies under specific users
will be checked with.

Under the same scenario with 1,000 policies, we com-
pare the latency between SDNKeeper-enabled OpenDay-
light controller and original OpenDaylight controller. Ac-
cording to the access control mechanism, the policy deci-
sion will affect request processing time. Due to the pro-
cessing time of the controller, decision “REJECT” will
make the processing time shorter than original, while deci-
sion “ACCEPT” will introduce a little computational over-
head. As shown in Fig. 6 (b), SDNKeeper with decision
“ACCEPT” only introduces about 0.15 ms extra delay on
average. And when request is “REJECT” by SDNKeeper,
the latency is largely reduced about 0.17 ms, 3.10 ms, 2.36
ms and 2.19 ms in GET, POST, PUT, DELETE requests

2000 4000 6000 8000 10000

No. of Requests

0

2

4

6

8

10

L
at

en
cy

 (
m

s)

(a) Latency of SDNKeeper

GET

POST
PUT

DELETE

2000 4000 6000 8000 10000

No. of Requests

0

10

20

30

40

50

P
er

ce
n
ta

g
e

o
f

C
o
n
su

m
p
ti

o
n
 (

%
)

(b) Computational Overhead of SDNKeeper

CPU - SDNKeeper-enabled ODL

Memory - SDNKeeper-enabled ODL

CPU - ODL

Memory - ODL

Figure 7: Evaluation Result : (a) latency of SDNKeeper with
different number of requests, (b) computational overhead of
SDNKeeper, which is evaluated with 8G of memory and 4 CPU
cores.

respectively. In practice, decision “ACCEPT” and “RE-
JECT” are mixed to construct a blameless policy set, thus
the extra delay which is introduced by SDNKeeper will be
further reduced.

We then evaluate the latency of SDNKeeper with dif-
ferent numbers of requests. As shown in Fig. 7 (a), when
the number of requests increases from 2,000 to 10,000,
there is no significant difference in the latency of each re-
quest, which means SDNKeeper can work smoothly when
processing a large number of requests. In short, SDN-
Keeper has insignificant computational overhead for policy
processing.

7.2.4. Throughput Evaluation

We then evaluate the throughput of SDNKeeper. In
the evaluation, we send a large number of REST requests
to fulfill the capacity of the controller and measure the
number of requests that can be processed per second, i.e.,
the number of received responses within one second.

As shown in Fig. 6 (c), no matter what the decision
is, the performance of the controller is almost unchanged
when we increase the number of policies significantly. This
result is consistent with the result in latency evaluation.

13

2 4 6 8 10 12 14 16

No. of Thread

50

100

150

200

250

300

350

400

450

500

N
o

.
o

f
R

es
p

o
n

ce

Throughput of SDNKeeper

4G-1CPU core

8G-1CPU core

8G-2CPU cores

8G-3CPU cores

8G-4CPU cores

Figure 8: Throughput of SDNKeeper with the decision “AC-
CEPT” under different configurations.

The number of policies has negligible impact under our
semantic tree design.

In Fig. 6 (d), we compare the throughput in the Open-
Daylight controller with and without SDNKeeper. We
vary the number of threads to test the processing capacity
of SDNKeeper. From the results we can see that SDN-
Keeper with the decision “REJECT” always gets the best
performance without being affected by the number of threads.
While for both original OpenDaylight controller and SDN-
Keeper-enabled OpenDaylight controller with the decision
“ACCEPT”, the throughput varies with the number of
threads. Based on our experimental environment, when
the number of threads is greater than 4, the processing
capability is no longer significantly affected by thread’s
number and close to the ideal. And the performance of
SDNKeeper-enabled controller is almost as good as orig-
inal OpenDaylight controller according to the evaluation
results. We then compare the throughput of SDNKeeper
under different configurations. As shown in the Fig. 8,
with the same number of CPU cores, allocating more mem-
ory can make SDNKeeper achieve higher throughput. Sim-
ilarly, under the same configuration with 8G of memory,
increasing the number of CPU cores can improve the through-
put when the number of CPU cores is less than 4. In short,
SDNKeeper performs access control accurately with neg-
ligible effect on the processing capability of the controller.

7.2.5. Computational Overhead Evaluation

We evaluate the computational overhead of SDNKeeper
based on the number of requests, particularly the CPU
and memory consumed when processing different numbers
of requests. Since SDNKeeper running on the OpenDay-
light controller as a plugin, we evaluate the computational
overhead by measuring the CPU and memory consumed
by the original OpenDaylight controller and SDNKeeper
enabled OpenDaylight controller. As shown in Fig 7 (b),
SDNKeeper consumes approximately 8.19 M of memory
when processing thousands of requests. Meanwhile, the

average CPU consumption of SDNKeeper is about 28 mil-
licores. For both controllers, the CPU consumption is at
its highest when processing 2,000 requests. This is because
the execution time of processing 2,000 requests is so short
that the system has not reached a stable state. When there
are a large number of requests being processed, the system
maintains a stable CPU consumption. To summarize, the
extra computational overhead introduced by SDNKeeper
processing requests is negligible compared to the original
SDN controller.

7.3. Discussion

Based on our correctness proof of the system design
and model checking result in Section 6.2, we can prove
that the system design of SDNKeeper is correct. Mean-
while, from effectiveness evaluation results we can con-
clude that the system implementation of SDNKeeper is
correct. Compared to the southbound interface, the NBI is
latency insensitive and infrequent. According to the eval-
uation results, 0.15 ms extra delay by SDNKeeper in NBI
communication is acceptable. In practice, to guarantee
the service quality, service providers usually limit the rate
of access to the controller, which is smaller than through-
put threshold. Furthermore, according to the evaluation
results shown in Fig. 6 (d), the throughput of SDNKeeper
enabled controller is very close to the throughput thresh-
old of the original controller. Therefore, the throughput
degradation introduced by SDNKeeper will not affect the
response rate of access requests. To conclude, SDNKeeper
can prevent unauthorized requests effectively with negligi-
ble impact on the performance of the SDN controller.

8. Conclusion

Having advantages of centralized control and progra-
mmability, SDN has been rapidly applied to the SDN-
based cloud to provide the network services for upper ap-
plications. SDN controller acts as the brain is the most
critical component for the whole network. Therefore, ef-
ficiently protecting and managing the resources inside the
controller becomes an important issue. To address that,
we propose SDNKeeper, a lightweight policy enforcement
system, to assist administrators in protecting and manag-
ing resources. In addition, we design a policy language for
administrators to define policies. With these fine-grained
policies, SDNKeeper can perform access control for each
request to defend against unauthorized attacks and avoid
network misconfiguration. What’s more, SDNKeeper is
application-transparent and enable administrators to up-
date policies on the fly. We adopt formal methods to prove
the correctness of the system design. Then we implement
the prototype of policy enforcement system and evalu-
ate its performance. The results show that SDNKeeper
can accurately block illegal requests outside the controller
and work smoothly with negligible computational over-
head and insignificant throughput degradation.

14

Appendix A. Policy Language Syntax

Policy Hierarchy

policySet : globalSet? localSet? ;

globalSet : ’GLOBAL_POLICY {’ policy* ’}’

localSet : ’LOCAL_POLICY {’ localPolicy* ’}’

localPolicy: role.(user)? ’{’ policy* ’}’

policy : policy_name ’{’ statement ’}’

Policy Statement

statement : ’{’ statement ’}’

| ’ACCEPT’ | ’REJECT’ | if_state

if_state : ’if (’ expr ’)’ statement

(’else’ statement)?

expr : ’(’ expr ’)’

| expr lop expr | primary aop primary

| true | false

lop : ’&&’ | ’||’

aop : ’>=’ | ’<=’ | ’>’ | ’<’

| ’==’ | ’!=’ | ’REG’

Primary

primary : predefined | jsonpath | literal

predefined: ’subject.’

(’role’ | ’user’)

| ’action.’

(’uri’ | ’query’ | ’method’)

| ’environment.’

(’date’ | ’time’ | ’week’)

jsonpath : ’$.’ string (’.’ string)*

literal : int | float | string | bool | null

“?” indicates 0 or 1 occurrences of the preceding element.
“*” indicates 0 or more occurrences of the preceding ele-
ment.

References

[1] X. Leng, K. Hou, Y. Chen, K. Bu, L. Song, SDNKeeper:
Lightweight Resource Protection and Management System for
SDN-based Cloud, in: 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), IEEE, 2018, pp.
1–10.

[2] E. Haleplidis, K. Pentikousis, S. Denazis, J. Salim, D. Meyer,
O. Koufopavlou, Software-defined networking (SDN): Layers
and architecture terminology. RFC 7426, IRTF. (2015).

[3] A. Greenberg, SDN for the cloud, in: Keynote in the 2015 ACM
Conference on Special Interest Group on Data Communication,
2015.

[4] Microsoft Azure and Software Defined Networking, accessed on
2018-11-8.
URL https://goo.gl/t2QVUm

[5] IBM Network Services for Software Defined Networks, accessed
on 2018-11-8.
URL https://goo.gl/xP6cLh

[6] Google cloud platform, accessed on 2018-11-8.
URL https://goo.gl/B2fMfJ

[7] CloudFabric, a SDN-based data center developed by Huawei,
accessed on 2018-11-24.
URL https://goo.gl/mp9E9J

[8] NovoDC, a SDN-based data center developed by China Mobile,
accessed on 2018-11-24.
URL https://goo.gl/pdktxv

[9] Synergy Research Group, accessed on 2018-11-8.
URL https://goo.gl/f7yTH9

[10] I. D. Corporation, A report on datacenter by idc, accessed on
2017-07-31.
URL https://goo.gl/ZLv2Pg

[11] AAA, a Project of OpenDaylight Controller, accessed on 2018-
01-02.
URL https://goo.gl/LvfRoH

[12] Y. E. Oktian, S.-G. Lee, J. Lam, OAuthkeeper: An Autho-
rization Framework for Software Defined Network, Journal of
Network and Systems Management 1–22.

[13] C. R. Taylor, D. C. MacFarland, D. R. Smestad, C. A. Shue,
Contextual, flow-based access control with scalable host-based
SDN techniques, in: Computer Communications, IEEE INFO-
COM 2016-The 35th Annual IEEE International Conference on,
IEEE, 2016, pp. 1–9.

[14] F. Klaedtke, G. O. Karame, R. Bifulco, H. Cui, Access control
for SDN controllers, in: Proc. 3rd ACM HotSDN, 2014, pp.
219–220.

[15] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, G. Gu,
A Security Enforcement Kernel for OpenFlow Networks, in:
Proc. 1st ACM HotSDN, 2012, pp. 121–126.

[16] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, X. Chen,
SDNShield: Reconciliating Configurable Application Permis-
sions for SDN App Markets, in: Dependable Systems and Net-
works (DSN), 2016 46th Annual IEEE/IFIP International Con-
ference on, IEEE, 2016, pp. 121–132.

[17] C. Banse, S. Rangarajan, A secure northbound interface for
SDN applications, in: Trustcom/BigDataSE/ISPA, 2015 IEEE,
Vol. 1, IEEE, 2015, pp. 834–839.

[18] Y. E. Oktian, S. Lee, H. Lee, J. Lam, Secure your northbound
SDN API, in: Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on, IEEE, 2015, pp. 919–920.

[19] M. Lee, Y. Kim, Y. Lee, A home cloud-based home network
auto-configuration using SDN, in: Networking, Sensing and
Control (ICNSC), 2015 IEEE 12th International Conference on,
IEEE, 2015, pp. 444–449.

[20] H. Kim, N. Feamster, Improving network management with
software defined networking, IEEE Communications Magazine
51 (2) (2013) 114–119.

[21] D. Levin, M. Canini, S. Schmid, A. Feldmann, Incremental SDN
deployment in enterprise networks, in: ACM SIGCOMM Com-
puter Communication Review, Vol. 43, ACM, 2013, pp. 473–
474.

[22] H. Ali-Ahmad, C. Cicconetti, A. De la Oliva, V. Mancuso, M. R.
Sama, P. Seite, S. Shanmugalingam, An SDN-based network
architecture for extremely dense wireless networks, in: Future
Networks and Services (SDN4FNS), 2013 IEEE SDN for, IEEE,
2013, pp. 1–7.

[23] A. Basta, A. Blenk, K. Hoffmann, H. J. Morper, M. Hoffmann,
W. Kellerer, Towards a cost optimal design for a 5g mobile
core network based on SDN and NFV, IEEE Transactions on
Network and Service Management.

[24] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella,
Towards an elastic distributed SDN controller, in: ACM SIG-
COMM Computer Communication Review, Vol. 43, ACM,
2013, pp. 7–12.

[25] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, G. Wang,
Meridian: an SDN platform for cloud network services, IEEE
Communications Magazine 51 (2) (2013) 120–127.

[26] T. Wang, F. Liu, H. Xu, An Efficient Online Algorithm for
Dynamic SDN Controller Assignment in Data Center Networks,
IEEE/ACM Transactions on Networking 25 (5) (2017) 2788–
2801.

[27] H. developer, Northbound Interface of SDN, accessed on 2018-
10-25.
URL https://goo.gl/D2wv2L

[28] C. Rigney, S. Willens, A. Rubens, W. Simpson, Remote au-

15

https://goo.gl/t2QVUm
https://goo.gl/t2QVUm
https://goo.gl/xP6cLh
https://goo.gl/xP6cLh
https://goo.gl/B2fMfJ
https://goo.gl/B2fMfJ
https://goo.gl/mp9E9J
https://goo.gl/mp9E9J
https://goo.gl/pdktxv
https://goo.gl/pdktxv
https://goo.gl/f7yTH9
https://goo.gl/f7yTH9
https://goo.gl/ZLv2Pg
https://goo.gl/ZLv2Pg
https://goo.gl/LvfRoH
https://goo.gl/LvfRoH
https://goo.gl/D2wv2L
https://goo.gl/D2wv2L

thentication dial in user service (RADIUS). RFC 2058, Network
Working Group. (1996).

[29] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, Diam-
eter base protocol. RFC 3588, Network Working Group. (2003).

[30] S. Matsumoto, S. Hitz, A. Perrig, Fleet: Defending SDNs from
Malicious Administrators, in: Proc. 3rd ACM HotSDN, 2014,
pp. 103–108.

[31] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, S. Krish-
namurthi, Participatory Networking: An API for Application
Control of SDNs 43 (4) (2013) 327–338.

[32] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Baner-
jee, C. Clark, Y. Ma, P. Sharma, Y. Zhang, Pga: Using graphs
to express and automatically reconcile network policies, ACM
SIGCOMM Computer Communication Review 45 (4) (2015)
29–42.

[33] H. Hu, W. Han, G.-J. Ahn, Z. Zhao, Flowguard: building robust
firewalls for software-defined networks, in: Proceedings of the
third workshop on Hot topics in software defined networking,
ACM, 2014, pp. 97–102.

[34] Opendaylight, A mainstream SDN controller, accessed on 2018-
10-12.
URL https://goo.gl/JwB2G6

[35] Symantec, Cloud Data Protection and Security, accessed on
2018-09-28.
URL https://goo.gl/yud9Mq

[36] DoorCloud, Cloud Access Control, accessed on 2018-10-18.
URL https://goo.gl/bxBAkF

[37] A. R. Khan, Access control in cloud computing environment,
ARPN Journal of Engineering and Applied Sciences 7 (5) (2012)
613–615.

[38] R. Charanya, M. Aramudhan, Survey on access control issues
in cloud computing, in: Emerging Trends in Engineering, Tech-
nology and Science (ICETETS), International Conference on,
IEEE, 2016, pp. 1–4.

[39] Y. A. Younis, K. Kifayat, M. Merabti, An access control model
for cloud computing, Journal of Information Security and Ap-
plications 19 (1) (2014) 45–60.

[40] R. Aluvalu, L. Muddana, A survey on access control models in
cloud computing, in: Emerging ICT for Bridging the Future-
Proceedings of the 49th Annual Convention of the Computer
Society of India (CSI) Volume 1, Springer, 2015, pp. 653–664.

[41] M. S. Malik, M. Montanari, J. H. Huh, R. B. Bobba, R. H.
Campbell, Towards SDN enabled network control delegation
in clouds, in: Dependable Systems and Networks (DSN), 2013
43rd Annual IEEE/IFIP International Conference on, IEEE,
2013, pp. 1–6.

[42] R. Miao, M. Yu, N. Jain, Nimbus: cloud-scale attack detection
and mitigation, in: Acm sigcomm computer communication re-
view, Vol. 44, ACM, 2014, pp. 121–122.

[43] D. C. Verma, Simplifying network administration using policy-
based management, IEEE network 16 (2) (2002) 20–26.

[44] A. Rayes, M. Cheung, Policy-based network security manage-
ment, uS Patent 7,237,267 (Jun. 26 2007).

[45] L. Lymberopoulos, E. Lupu, M. Sloman, An adaptive policy-
based framework for network services management, Journal of
Network and systems Management 11 (3) (2003) 277–303.

[46] Q. Li, Y. Chen, P. P. C. Lee, M. Xu, K. Ren, Security Policy
Violations in SDN Data Plane, IEEE/ACM Transactions on
Networking (TON) 26 (4) (2018) 1715–1727.

[47] F. Hadi, M. Imran, M. H. Durad, M. Waris, A simple secu-
rity policy enforcement system for an institution using SDN
controller, in: 2018 15th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), IEEE, 2018, pp.
489–494.

[48] V. Varadharajan, K. Karmakar, U. Tupakula, M. Hitchens, A
Policy-Based Security Architecture for Software-Defined Net-
works, IEEE Transactions on Information Forensics and Secu-
rity 14 (4) (2019) 897–912.

[49] W. Han, C. Lei, A survey on policy languages in network and
security management, Computer Networks 56 (1) (2012) 477–
489.

[50] B. Moore, E. Ellesson, J. Strassner, A. Westerinen, Policy Core
Information Model–Version 1 Specification. RFC 3060, Network
Working Group. (2001).

[51] T. Moses, et al., Extensible access control markup language
(xacml) version 2.0, Oasis Standard 200502.

[52] L. Xu, J. Huang, S. Hong, J. Zhang, G. Gu, Attacking the
Brain: Races in the SDN Control Plane, in: 26th USENIX
Security Symposium (USENIX Security 17), 2017.

[53] S. Scott-Hayward, Design and deployment of secure, robust, and
resilient SDN controllers, in: Network Softwarization (NetSoft),
2015 1st IEEE Conference on, IEEE, 2015, pp. 1–5.

[54] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, et al., Trou-
bleshooting blackbox SDN control software with minimal causal
sequences, ACM SIGCOMM Computer Communication Review
44 (4) (2015) 395–406.

[55] A. Gounares, Interactive graph for navigating application code,
uS Patent 9,658,943 (May 23 2017).
URL https://www.google.com/patents/US9658943

[56] I. BAKER, K. BASSIN, S. Kagan, S. Smith, System and
method to classify automated code inspection services defect
output for defect analysis, uS Patent 9,442,821 (Sep. 13 2016).
URL https://www.google.com/patents/US9442821

[57] Code inspections in the intellij platform, accessed on 2018-11-
10.
URL https://goo.gl/kDqenJ

[58] Project Floodlight, accessed on 2018-11-7.
URL https://goo.gl/8CxYdF

[59] Onosproject, Onos, accessed on 2018-10-12.
URL https://goo.gl/Sdsc6X

[60] Ryu SDN Framework, accessed on 2018-11-7.
URL https://goo.gl/Mdxewq

[61] A. Bierman, M. Bjorklund, K. Watsen, RESTCONF protocol.
RFC 8040, IETF. (2017).

[62] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, A. Tacchella, Nusmv 2: An
opensource tool for symbolic model checking, in: International
Conference on Computer Aided Verification, Springer, 2002, pp.
359–364.

[63] ANTLR, Another Tool for Language Recognition, accessed on
2018-10-28.
URL https://goo.gl/bxBAkF

[64] Akka, building highly concurrent, distributed and resilient
message-driven applications on the JVM, accessed on 2018-12-
07.
URL https://goo.gl/3yU63u

[65] S. R. Hussain, O. Chowdhury, S. Mehnaz, E. Bertino, LTEIn-
spector: A Systematic Approach for Adversarial Testing of 4G
LTE, in: Symposium on Network and Distributed Systems Se-
curity (NDSS), 2018, pp. 18–21.

[66] Opendaylight, Neutron Northbound, accessed on 2018-12-23.
URL https://goo.gl/MZ4Fdd

[67] O. Sefraoui, M. Aissaoui, M. Eleuldj, OpenStack: toward an
open-source solution for cloud computing, International Journal
of Computer Applications 55 (3).

16

https://goo.gl/JwB2G6
https://goo.gl/JwB2G6
https://goo.gl/yud9Mq
https://goo.gl/yud9Mq
https://goo.gl/bxBAkF
https://goo.gl/bxBAkF
https://www.google.com/patents/US9658943
https://www.google.com/patents/US9658943
https://www.google.com/patents/US9442821
https://www.google.com/patents/US9442821
https://www.google.com/patents/US9442821
https://www.google.com/patents/US9442821
https://goo.gl/kDqenJ
https://goo.gl/kDqenJ
https://goo.gl/8CxYdF
https://goo.gl/8CxYdF
https://goo.gl/Sdsc6X
https://goo.gl/Sdsc6X
https://goo.gl/Mdxewq
https://goo.gl/Mdxewq
https://goo.gl/bxBAkF
https://goo.gl/bxBAkF
https://goo.gl/3yU63u
https://goo.gl/3yU63u
https://goo.gl/3yU63u
https://goo.gl/MZ4Fdd
https://goo.gl/MZ4Fdd

	Introduction
	Background and Related Work
	Background
	Related Work

	SDNKeeper Overview
	Threat Model
	Application Scenario
	Architecture of SDNKeeper

	Policy Language and Policy Design
	REST Request
	Policy
	Policy Hierarchy
	Policy Generation

	Policy Interpreter and Permission Engine
	Policy Interpreter
	Permission Engine

	Correctness Proof of SDNKeeper
	System Modeling
	Access Control Filter (ACF)
	Permission Engine (PE)

	Model Checking
	Discussion

	Implementation and Evaluation
	Implementation
	Policy Interpreter
	Permission Engine
	Model Checking

	Evaluation
	Methodology
	Effectiveness Evaluation
	Latency Evaluation
	Throughput Evaluation
	Computational Overhead Evaluation

	Discussion

	Conclusion
	Policy Language Syntax

