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ABSTRACT
Managing next-generation enterprise networks requires collecting
and analyzing enormous volumes (tens of Tbps) of network traf-
fic data in real time to detect potential anomalies, classify attacks,
identify root causes, and rapidly deploy effective mitigations. Con-
ducting robust and scalable analysis on such traffic volumes is a
daunting “haystack” problem that demands intelligent strategies
to winnow traffic to extract and pinpoint “needles” of interest. Re-
cent advances in software-defined networking and programmable
dataplanes, that enable dynamic reconfiguration of switching hard-
ware to adapt to changing traffic conditions, provide a foundational
building block. However, they lack the resources and programming
primitives for complex computational models.

Toward that end, we present LANTERN, a layered and adaptive
network telemetry system that facilitates joint collection and analy-
sis of network traffic atmultiple resolutions in coordinationwith the
controller. Our design offloads complex machine-learning analysis
to the controller, while still enabling proactive telemetry refinement
and reactivemitigation triggers at the data-plane level. We evaluate
our layered approach by replaying a labeled CIC-IDS attack dataset
through both software and hardware P4 switches. LANTERN is able
to detect most anomalies, accurately classify them, and introduces
negligible switching overhead (1% latency).
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•Networks→Programmable networks; •Computingmethod-
ologies→ Anomaly detection.

KEYWORDS
P4; Programming Switch; Anomaly Detection
ACM Reference Format:
Kaiyu Hou, Dhiraj Saharia, Vinod Yegneswaran, and Phillip Porras. 2023.
LANTERN: Layered Adaptive Network Telemetry Collection for Program-
mable Dataplanes. In Proceedings of the 6th European P4 Workshop (EuroP4
’23), December 8, 2023, Paris, France. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3630047.3630194

∗This work was initiated while Kaiyu Hou was a research intern at SRI International.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EuroP4 ’23, December 8, 2023, Paris, France
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0446-8/23/12. . . $15.00
https://doi.org/10.1145/3630047.3630194

1 INTRODUCTION
Emerging next generation networks offer many promises, such
as dramatic bandwidth expansion (due to technologies like 5G),
significantly lower latency (< 1 ms), and billions of connected de-
vices. If realized, this new 5G reality will provide the foundations
for (𝑎) new IoT everywhere device communication models, (𝑏) new
trust models (driven by greater communication), and (𝑐) new ser-
vice delivery models. Unfortunately, this generational leap forward
in networking will provide equivalent leaps in the capabilities of
attackers.

An important requirement for detecting attacks directed against
these next-generation networks is the ability to gather scalable
and fine-grained network measurements from network devices.
Recent breakthroughs in programmable routing silicon overcome
the limitations of conventional router ASICs by leveraging massive
parallel processing capacity to facilitate deep packet inspection
capabilities while delivering terabit-level forwarding capacity. An
important component is developing algorithmic techniques that
leverage these hardware capabilities to enable scalable always-
on in-band telemetry collection query frameworks for efficiently
performing analytics on this data. Prior efforts such as Sonata [5],
have attempted to address this problem by developing a framework
that allows network operators to formulate telemetry questions
usingMapReduce-style queries across network traffic. They showed
how to formulate queries that would allow operators to quickly and
efficiently detect security events such as DNS reflection attacks and
showed how these queries could be mapped to various network
targets, particularly P4 switches.

We describe our approach in the context of a system called
LANTERN that has three analysis layers, but that can be extended
with additional intermediate layers. At the first layer, LANTERN
explores variations in traffic characteristics at the link level. One
approach that we explore is the use of variational autoencoder
(VAE) [8] schemes that are designed to model the internal opera-
tions of the P4 switch itself, based on switch-internal attributes,
interface statistics, errors, and event counts. The approach can
deliver network stability insights in a highly telemetry-efficient
manner, using features that operate within a sufficiently tractable
bound of input dimensionality. This perspective, while not fine-
grained for conducting malicious-flow or attack-source analyses,
could provide a scalable technique for detecting catastrophic modal-
ity shifts in switch operations, which can then trigger finer-grained
feature extractions that drive root-cause diagnoses.

Unexpected deviations in link-level characteristics trigger ad-
ditional fine-grained statistics tracking at the flow-level, which
corresponds to the second layer of LANTERN. Finally, subsets of
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deviant flows are subject to deep packet analysis by careful sam-
pling of payload bytes that are then sent to the controller. The
controller uses Rabin Fingerprints [11] to identify invariant content
that is specific to offending flows and deploys a mitigating trigger
at the P4 switch to automatically block all traffic from IP addresses
that demonstrate the anomalous traffic fingerprint. Our guiding
principle in designing this framework is to minimize real-time con-
troller interaction such that the switch can proactively adapt based
on periodic guidance from the controller. In addition, the ultimate
objective is to enable the switch with capability to install dynamic
mitigation rules that are informed both by the layered analysis and
apriori triggers generated by the controller.
Contributions: The contributions of our work include:
• A novel framework for layered telemetry collection in program-
mable networks;
• Strategies for VAE-based attack detection and supervised attack
classification techniques;
• Concept of dynamic P4 response triggers based on Rabin Finger-
prints for proactive mitigation;
• Prototype implementation in BMV2 and Tofino ASIC and evalu-
ation using the CIC-IDS dataset.

2 BACKGROUND AND MOTIVATION
We provide an overview of the types of network attacks and anom-
alies that we seek to detect and mitigate. Next, we describe the
types of telemetry that we would need to isolate such phenomenon
and highlight advantages of LANTERN over published and state-
of-the-art approaches. The classes of anomalous network events
of interest broadly include inbound and outbound DDoS attacks,
large-scale network reconnaissance, worm outbreaks, flash crowds,
and network outages.
Network Attacks. DDoS attacks have been well studied in the
context of fixed enterprise and core networks. These include host-
based resource-exhaustion attacks [3], application-level attacks [1],
reflector-based amplification attacks [13], pulsing attacks [10], tem-
poral lensing attacks [12], and link-flooding attacks [7]. For each
of these attacks, key statistics to consider include volume of traffic,
distribution of sources, and specific timing patterns.

Large-scale reconnaissance attempts that horizontally attempt
to map the network produce unusually high amounts of failed
connection attempts, without retries. Worm outbreaks typically
manifest themselves at the network layer as uptricks in the number
of flows and sources directed at specific ports, but not specifically
directed at any particular host. In contrast, flash crowds resemble
more like a DDoS attack in that they demonstrate sudden spikes in
flow counts and IP source counts connecting to a specific service.
The key difference is that in a well-engineered, elastic network
this does not result in measurable degradation in service response
times. Finally, network outages are characterized by unusual delays,
reconnection attempts, and retransmits.

Network security monitoring and situational awareness in re-
sponse to such threats require collecting network statistics and
metrics in real time. Recent breakthroughs in network telemetry
lie in the field of “reactive” collection. They require the network
operators to issue series of commands to the dataplane to query
multiple statistics or a combination of several metrics to detect

and isolate traffic anomalies. The decision process involved in mak-
ing a mitigation decision typically involves answering some of the
following questions: (𝑖) Is my network experiencing an anomaly?
(𝑖𝑖) Is this anomaly an attack or an outage? (𝑖𝑖𝑖) If an attack, is it
an internal→external or external→internal attack? (𝑖𝑣) What type
of attack is it? (𝑣) Which systems are victims and sources of the
attack? (𝑣𝑖) How do we mitigate this attack?

The objective of LANTERN is to enable the controller to dynam-
ically program the switch with proactive functions that initiate
fine-grained telemetry when the switch finds the network to be
under duress or observes symptoms of anomalous behavior from
always-on coarse-grained telemetry.
Programmable Data Planes for Threat Mitigation. Prior work
has explored strategies for dynamic telemetry collection in program-
mable dataplanes. Notable such efforts include systems like Sonata,
QPipe, Poseidon, Jaqen, Dynatos, and Stats 101, as summarized
in Table 1. Sonata [5] provides an interface to express queries for
some common telemetry tasks, such as querying newly opened
TCP connections and identifying DNS reflection attacks. To achieve
real-time execution, Sonata dynamically adjusts queries to ensure
the availability of switch resources, such as fast memory. Here, the
focus is on scalably supporting query traffic, while the network
operators are agnostic to where or how the query will execute.
DynATOS [2] further improves the performance of Sonata by using
a resource scheduler to dynamical decide when and for how long
to execute the set of active queries on the data plane at runtime.
It can also execute multiple concurrent and sequential queries on
switches to meet the accuracy and latency goals. Poseidon [17]
and Jaqen [9] propose modular policy abstractions and defense
primitives to collect flow statistics on P4 switches and integrate
DDoS detection with defense. LANTERN leverages programmabil-
ity to support both reactive telemetry collection and proactive
mitigation. Without manual interference, our learning engine can
automatically reprogram the running switches to adaptively collect
fine-grained telemetry as well as implement mitigating triggers
that automatically block source IPs or subnets based on specific
behavioral patterns.

2.1 Motivating Scenarios
We discuss two motivating scenarios. First, we consider the case of
a new IoT vulnerability that is being actively exploited to launch
DDoS attacks. Next, we describe how LANTERN can detect and
mitigate an outbound data exfiltration attack.
Scenario 1: Internal->External IoT DDoS attack. An anomaly
may be observed in internal scanning as well as outbound flows
and/or overall traffic. Many internal hosts may suddenly start ex-
hibiting this behavior.
• Step 1: Data plane stats are used by the controller to identify that
there is an anomaly.
• Step 2: Control plane identifies the type of attack and its direction.
• Step 3: Control plane isolates the networks, ports, or sources
involved in the attack
• Step 4: Control plane instructs data plane to employ selective DPI
to collect payload from associated attack sources.
• Step 5: Control plane identifies this is a new attack and uses Rabin
fingerprints to generate payload/flow-level signature for it.
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Table 1: Design Space of Published Telemetry Collection Methods for Programmable Networks
Collection
Methods Approach Controller

Involved
Adaptive Data
Plane Telemetry

Data Plane
Alerting

Mitigation
Triggers

Resources
Optimized

LANTERN Layer-Based ML Yes Layer-based Yes Diverse attacks Memory, controller-bandwidth, match entries
Stats 101 [4] Online Computation Yes Yes by Controller Yes No High DP Memory and Processor Usage
QPipe [6] Sketch-Based No No No No Low Control Bandwidth Usage due to Sketches
Sonata [5] Reactive Query Yes Reactivate by Admin No By Admin Reduce DP Processor Usage by workload ordering
DynATOS [2] Reactive Query Yes Reactivate by Admin No By Admin Reduce DP Query Overhead by runtime ordering
Poseidon [17] Predefined DP Policy Yes Policy-based Yes DDoS only Low DP Memory; Required 3rd-party scrubbing centers
Jaqen [9] Sketch-based Yes No Yes DDoS only Match entries, hash bits, SRAM
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Figure 1: System design overview of LANTERN.

• Step 6: Control plane deploys proactive mitigation triggers at
the switch such that all flows from new sources exhibiting this
anomalous behavior are automatically blocked at the switch
without involving the controller.

Scenario 2: Internal-External Data Exfiltration. An anomalous
internal to external communication may involve exfiltration of
sensitive data to an untrusted remote network.
• Step 1: Coarse-grained LANTERN data plane statistics are used by
the controller to identify that there is an anomalous high volume
data transfer from one or more internal hosts to a remote host.
• Step 2: LANTERN control plane queries the data plane for more
fine-grained statistics on precursor inbound flows to the victim
IP address.
• Step 3: If necessary, the LANTERN control plane installs triggers
to obtain deeper statistics of flows communicating with the sus-
pected external network.
• Step 4: Once the attack has been accurately characterized, miti-
gating triggers are deployed to block future exfiltration attacks
that demonstrate similar communication patterns.

3 SYSTEM DESIGN
Figure 1 provides a high-level illustration of the design of LANTERN
and how it enables layered telemetry collection for adaptive threat
mitigation. It is composed of two major parts: (𝑖) an execution
engine at P4 programmable data plane, and (𝑖𝑖) an analysis engine
at the controller side. The P4 data plane is primarily for online
telemetry collection and can also mitigate threats by executing
new flow rules. The controller can perform more advanced analysis
based on the telemetry collected at dataplane and can also install

new flow rules to the data plane. In addition, it can install triggers
that instruct the switch to proactively deploy flow rules when
certain network conditions are met.

The layer-based architecture of LANTERN allows the system to
balance attack detection fidelity while optimizing for data plane
memory/computation usage and control channel bandwidth uti-
lization. Specifically, the current design incorporates three levels of
telemetry collection and analysis modules in both the data plane
and the controller, namely link-level, flow-level, and packet-level.

At the link-level collection, the P4 switch will only collect very
coarse-grained telemetry on all the traffic at each ingress port.
Specifically, it will only collect seven online port statistics. The
controller uses these statistics for anomaly detection. We have
implemented a simple unsupervised VAE analysis based on these
statistics. Our motivation behind implementing VAE-based algo-
rithms is that they involve simple matrix multiplication tasks that
can be natively ported to the switch in the future. Our preliminary
evaluation shows that these seven feature statistics are already able
to assist in detecting anomalies and triggering alerts (though with
limited false positives).

When an anomaly is detected by the VAE algorithm through
the layer-1 module, the telemetry collection will then proceed to
activate flow-level collection. At this level, we collect more fine-
grained telemetry for each flow on the targeted switch ingress
port, based on features suggested by NetML [16]. We describe how
these are collected with greater detail in Section 4. The controller
may then run more fine-grained attack classification algorithms
based on flow-level telemetry. Specifically, we have implemented a
supervised N-way classification algorithm. The detection algorithm
will try to identify flows that trigger the anomaly and also identify
the kinds of attacks that may correspond to this anomaly.

The third layer for telemetry collection is at the packet level.
After identifying the attack type from layer-2 analysis, the task
for layer-3 is to produce attack signatures and generate mitigation
flow rules based on packet sampling. Specifically, the P4 data plane
will sample packets from the targeted flow and send them to the
controller. The controller will generate signatures, using invariant
sequence analysis techniques such as Rabin Fingerprints, and pro-
duce flow rules or proactive triggers based on such signatures for
attack mitigation.

3.1 Layer-based P4 Telemetry Collection
Programmability is a fundamental advantage of the P4 data plane.
Yet, compared to general-purpose programming languages, this
ability is highly-constrained within the P4 environment. For in-
stance, there are no loop instructions or division operations in the
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P4 language, there is only limited information we can extract from
a packet (type, length, and value) and the packet processing in P4 is
largely stateless, i.e., only counters and registers, which have very
limited capacity, can be used to store stateful information.

First, we briefly describe the methods we used to collect traffic
statistics for different levels in the P4 data plane and discuss the
main challenges. Our statistics collection methods draw from pub-
lished research ([4, 6]) that has implemented complex mathematical
operations (e.g., square root, median estimation, and quantiles) and
data structures using P4.
Flow Identification. We implement a Bloom filter to track switch-
level statistics, including new_flows, active_flows, and finished
_flows. We use the built-in P4 hash function to implement a simple
Bloom filter with 2 bits. When a new SYN packet is observed, we
increase the new flows and active flows counter. When a FIN
packet is observed, we check if it has a corresponding SYN packet
and update the finished_flow and active_flow counters.
Flow ID. It is challenging to use the limited switch space to map a
flow to its corresponding 5-tuple (src IP, dest IP, src port, dest port,
and protocol). For each new flow, we use a hash function to map
its 5-tuple to a flow_id value. All telemetry corresponding to this
flow is associated to this flow_id value. We also use 4 registers to
store the mapping between a flow_id to its corresponding src IP,
dest IP, src port, and dest port. (In our preliminary implementation,
we only consider TCP flows. Therefore, we do not need to record
the protocol in the 5-tuple). With these registers, after detecting a
flow as anomaly, the controller can generate mitigation rules by
mapping the flow_id back to its corresponding 5-tuple.
Average Flow Duration.We estimate the average flow duration from
the P4 data plane as shown in Code 1. Other telemetry statistics
are collected similarly. The flow start time is recorded to a reg-
ister and indexed by the flow_id value (L3). The flow duration
is calculated when the flow is finished (L8). Since P4 does not
support the divide operation and fractions, we use the formula
𝑎𝑣𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = (𝑎𝑣𝑒_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∗ 15 + 𝑓 𝑙𝑜𝑤_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) >> 4 with
bit shifting to estimate the recent average flow duration.

3.2 Layer-based Decision Engine in Controller
Link-level Telemetry for Anomaly Detection. To enable link-level
anomaly detection, we collect coarse-grained telemetry on each
switch link (switch port) and use VAEs [8] to detect network anom-
alies. VAEs are attractive for anomaly detection as they are unsuper-
vised detection techniques that can be trained online with unlabeled
datasets. We consider network anomaly events to be points where
the evaluation loss is higher than the average training loss by a
multiple (𝛼) of the standard deviation. We prefer a low threshold to
trigger the alert as a false positive alert can be corrected later in the
flow-level attack classification with more fine-grained telemetry.
We collect seven statistics in the P4 dataplane for VAE training and
evaluation, including number of new flows, finished flows, active
flows in five seconds, number of active flows in 60 seconds, average
flow duration, total packets per second, and total bytes per second.
Flow-level Telemetry for Attack Classification.We consider flow-level
detection as a multi-class classification problem. In this layer, the
classification model is pre-trained by labeled traffic. Taking the

1 // tcp.syn

2 cur_time = standard_metadata.

ingress_global_timestamp;

3 flow_time_counter.write(flow_id , cur_time);

4 // tcp.fin

5 cur_time = standard_metadata.

ingress_global_timestamp;

6 flow_time_counter.read(last_time , flow_id);

7 flow_duration = (cur_time - last_time);

8 ave_time = (ave_time * 15 + flow_duration) >> 4;

Code 1: Average Flow Duration Estimation

telemetry of each flow as the input, we aim to classify whether the
given flow is benign or attack, and determine the attack type. For
the prototype verification, we use a simple decision tree model as
the classifier. It can already generate classification accuracy of >
98% for most attacks that we evaluated. We expect a more advanced
multi-class classifier can achieve better results. Based on a previous
study [16], we collect statistics of number of packets, number of
bytes, average packet size, minimal packet size, maximal packet
size, size of the first ten packets, and inter-arrival time of the first
ten packets for each flow.
Packet-level Telemetry for Attack Mitigation. Our next goal is to
use more fine-grained packet-level telemetry to mitigate similar
inbound attack flows, which could come from other source ad-
dresses than ones we have already observed and blocked. After
the controller classifies an attack flow, it instructs the switch to
sample packets from the flow to create dynamic mitigation rules.
Depending on the attack type, the mitigation rule could be as sim-
ple as targeting the 5-tuple. It could also target a /24 subset with
more fine-grained mitigation rules, such as dropping flows with the
same size and inter-arrival time distribution of the first ten packets.
Moreover, attacks can also be mitigated based on packet signatures.
Since we do not want to affect the packet processing rate at the data
plane, we consider the attack mitigation as two tasks: (𝑖) the attack
signature generation task in the controller and (𝑖𝑖) the signature
matching task at the P4 data plane. Specifically, we use the con-
troller to generate the attack signatures. Those signatures are based
on sampled packets from the attack flow which were identified in
the second step.

The controller then proceeds to install attack mitigation rules at
the P4 data plane. Any incoming flows, which contain the attack
signatures, will be automatically blocked by the P4 data plane. After
the mitigation rules are installed, the mitigation process does not
require any assistance from the controller. Therefore, the signature
matching process could be done very quickly in the P4 hardware.

4 SYSTEM IMPLEMENTATION
We discuss the challenges involved in porting the BMV2 implemen-
tation to Tofino. There are many ways in which the real hardware
implementation differed from the BMV2 implementation. (𝑖) The
BMV2 v1model architecture has no limitation on addition and mul-
tiplication of signed and unsigned integer types. (𝑖𝑖) There is no
limitation on the bit-widths of the types of register arrays and coun-
ters that we can instantiate. (𝑖𝑖𝑖) The metadata attributes such as
packet length are defined at all phases of the packet processing
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Figure 2: VAE-based link-level telemetry results. Model is trained on Monday’s telemetry (benign traffic). The colored ranges are when
the attack happened. Alerts are generated for all attacks based on the link-level telemetry except slow DoS.

Algorithm 1: Fingerprint-based attack mitigation
Input :𝑎𝑡𝑡𝑎𝑐𝑘_𝑓 𝑙𝑜𝑤𝑠 , 𝑏𝑒𝑛𝑖𝑔𝑛_𝑓 𝑙𝑜𝑤𝑠

Output :𝑚𝑖𝑡𝑖𝑔𝑎𝑡𝑖𝑜𝑛_𝑟𝑢𝑙𝑒𝑠
1 for flow in attack_flows do
2 𝑐𝑎𝑛𝑑_𝑠𝑖𝑔𝑠 ← 𝑐𝑎𝑛𝑑_𝑠𝑖𝑔𝑠 ∩ {Rabin Fingerprint(𝑓 𝑙𝑜𝑤 [1 : 4] ) }
3 for flow in background_flows do
4 𝑐𝑎𝑛𝑑_𝑠𝑖𝑔𝑠 ← 𝑐𝑎𝑛𝑑_𝑠𝑖𝑔𝑠 − {Rabin Fingerprint(𝑓 𝑙𝑜𝑤 [1 : 4] ) }
5 for sig in cand_sigs do
6 𝑟𝑢𝑙𝑒𝑠 ← 𝑟𝑢𝑙𝑒𝑠 ∪ {Match:𝑟𝑎𝑤 (𝑠𝑖𝑔),Action:𝑟𝑒 𝑗𝑒𝑐𝑡 (𝑠𝑟𝑐_𝑖𝑝 ) }

pipeline. (𝑖𝑣) There is no limitation on reading and writing a regis-
ter multiple times per packet processed. (𝑣) There is no limitation
on the arithmetic that can be done to “update” values inside of a
register array. (𝑣𝑖) There is no limitation on the size of bit-shift
operations. (𝑣𝑖𝑖) There is no limitation on the bit-widths of integer
types that we wish to compare.

When we tried to perform a direct translation of the Bloom filter
code in the v1model, we were unable to due to limitations not just
on the number of stages, but also on the arguments having to be
aligned in certain locations in memory before they were passed to
another phase of processing. For this reason, we split the number
of actions from 1 compute_hashes action, to 3 of them (1 for each
hash we needed to calculate). We then directly store that value into
the ingress bridged header so that we can resume computation on
these fields in the egress processing.
Fingerprint generation and attack mitigation. Based on prior work
on automated worm fingerprinting [15], we use Rabin fingerprint-
ing [11] to generate Layer-7 packet signatures from the attack flows
in four steps. First, we only sample the first 𝑁 (we use N=4) packets
from the attack flows. Second, we only consider fingerprints with
high content prevalence among the flows from this attack as the
candidate attack fingerprints. Third, we consider all fingerprints
shown in background traffic as benign signatures. Hence, we gener-
ate signatures from non-attack periods and eliminate them from the
candidate attack fingerprints. Finally, we map attack fingerprints
back to the raw bytes strings and use these strings as the matching
keys of the mitigation rules, as described in Algorithm 1. The P4
switch will block source IPs that triggered these newly installed
mitigation rules.

5 SYSTEM EVALUATION
Dataset.We evaluate LANTERN using the CIC-IDS intrusion detec-
tion evaluation dataset [14]. This dataset has been widely used
in recent studies for evaluating network intrusion detection and
anomaly detection algorithms ([2, 16]). It has raw PCAP captures

with ∼50 million packets (50 GB) in five days, labeled from Monday
to Friday. The dataset contains both benign and the most common
attacks, including botnet, port scan, DDoS, Patator, and Heartbleed
port 444. The Monday traffic only includes the benign traffic. For
the following days, attacks are labeled by the combination of types,
time ranges, attacker and victim IPs. Therefore, we can directly iden-
tify the flows corresponding to an attack event. This information is
used to verify the efficiency of our algorithms.
Testbed.We use two end hosts, one BMV2 software P4 (or hardware
Tofino) switch, and one controller in our evaluation topology. The
two end hosts connect each other through the P4 switch. One
host is sending the raw PCAP of CIC-IDS dataset at the original
capturing rate by using the TCPReplay command. The P4 switch
forwards every packet it received from one port to another port.
While forwarding traffic, the P4 switch also runs our layer-based
adaptive telemetry collection algorithm and synchronizes statistics
to the controller. The controller dynamic adjusts the telemetry
collection policy and installs new mitigation rules in the switch.

5.1 Link-Level Detection
Figure 2 shows the results of applying VAE to the link-level teleme-
try of (a) Tuesday, (b) Wednesday, and (c) Friday. The purpose of
link-level detection is to determine whether there is an anomaly
happening in a specific switch link (i.e., switch port) with very lim-
ited telemetry, and dive into the flow-level detection for all flows
in that switch link. The VAE model is trained using the link-level
telemetry collected on Monday’s traffic. The x-axis in these figures
represents the time in one day from 9:00 am to 17:00 pm. The col-
ored ranges are when attacks occur. The y-axis represents the loss
function value difference. We simply compare the evaluation traffic
loss against the average training loss ofMonday’s traffic. Evenwhen
we use simple detection thresholding, after the initial stage, the
VAE detector can trigger alerts for the vast majority of attack events
(except slow DoS). Additionally, there are multiple false-positive
alerts which can be winnowed using flow-level detection.

5.2 Flow-Level Detection
Figure 3 shows the results of applying the basic decision tree classi-
fier to the flow-level telemetry of (a) Tuesday, (b) Wednesday, and
(c) Friday. The purpose of flow-level detection is to determine the
attack type of an anomaly event. Unlike the link-level detection, the
VAEmodel is trained by unsupervised data. At this level, we use 80%
of the labeled attack traffic to train the decision tree, and use the
rest 20% of traffic to evaluate the model. Specifically, we consider all
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Figure 3: Results of applying basic decision tree to the flow-level telemetry for the Tofino testbed. We randomly split 80% data for
training and 20% data for verification. The flow-level telemetry can be used to identify the type of attacks with high accuracy.

1 '\nAccept -Encoding: gzip , deflate\r\nAccept '

2 'on: keep -alive\r\nAccept -Encoding: gzip ,'

3 '08.1 HTTP /1.1\r\nHost: 205.174.165.73:808 '

Code 2: Exemplar Benign Signatures

1 't: */*\r\nUser -Agent: python -requests /2.1'

2 ': */*\r\nUser -Agent: python -requests /2.14 '

3 '*/*\r\nUser -Agent: python -requests /2.14.2 '

4 ...

5 'api/pop?botid=mitacs -pc6&sysinfo=Window '

6 'api/pop?botid=mitacs -pc4&sysinfo=Window '

7 ...

8 'botid=mitacs -pc6&sysinfo=Windows %207 HT'

9 'botid=mitacs -pc4&sysinfo=Windows %2010 H'

10 ..

Code 3: Exemplar Attack Signatures

DoS attacks to be one attack type. From the confusion matrix, we
see that the decision tree can classify the benign traffic and types
of attacks with very high accuracy. In addition, the training data is
also highly unbalanced. For instance, there are more than 1 million
data points labeled benign, while only 9000 data points are labeled
as the FTP-Patator attack.

5.3 Packet-Level Attack Mitigation
To verify the fingerprint generation and mitigation algorithm, we
use our framework to identify attack flows in Friday’s data from
10 am to 11 am using the process as described in §4. Specifically,
we consider all attack flows from the first fifteen minutes of traffic
(10:00 - 10:15) that were identified as attack flows by flow-level
telemetry. We sampled all fingerprints in the direction from at-
tackers to the victim and only labeled 346 fingerprints which are
observed in more than half of attack flows as candidate attack
fingerprints.

Next, we consider all fingerprints shown in Monday’s traffic as
benign signatures and filter them out from the candidate attack
fingerprints, to winnow down to a total of 235 fingerprints. Code 2
shows three typical benign signatures which have been filtered out
from the candidate set. Keywords shown in these three signatures,
including gzip, deflate (L1), keep-alive (L2), and Hostwith the
victim’s IP (L3), could be observed in every connection to the victim.
So, it is reasonable that they are identified as benign signatures.

We apply all 235 attack fingerprints to Friday’s traffic from 10:15
am to 11:00 am. There are in total of 27,225 flows. Our detection
algorithm captured all 187 attack flows with zero false positives and
zero false negatives. Code 3 shows some exemplar attack signatures.

5.4 Resource Usage and Performance
Hardware utilization.We measured the Tofino data plane’s resource
usage when LANTERN is deployed. The switch contains 12 stages
and 6 stages were used for table allocation and the total number of
tables allocatedwere 35. LANTERN does not use TCAM, as no ternary
matching is performed. It uses an average of 8.75% total SRAM for
exact matches, along with 6.77% VLIW (Very Long Instruction
Word) entries, and 13.89% Map RAM across all the stages.
Latency. To measure the latency incurred by the additional process-
ing of LANTERN, we compared the RTT of LANTERN against a basic
port forwarding program for the Tofino testbed. We found that the
latency of LANTERN is 613 ns, whereas 606 ns for the basic program,
which means LANTERN adds a negligible latency of 7 ns on average
across 2000 packets.

6 CONCLUSION
We have described the design and implementation of LANTERN, a
framework for layered, adaptive telemetry collection in program-
mable dataplanes. The system includes capabilities to dynamically
collect telemetry at multiple resolutions and deploy proactive miti-
gating triggers to block emerging threats. We have validated the
system using both software switch (BMV2) and hardware (Tofino)-
based implementations on the CIC-IDS dataset. Our results indicate
that LANTERN is able to accurately detect a broad range of anom-
alies, characterize them, and deploy effective mitigating triggers
while introducing minimal resource overhead and processing la-
tency at the switch. Deeper exploration using additional datasets
and comprehensive scalability testing is future work.
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