
Accelerate and Secure Serverless Networks
with QUIC

Kaiyu Hou†, Sen Lin†, Yan Chen†, Vinod Yegneswaran‡

†Northwestern University, ‡SRI International

SERVERLESS COMPUTING
Serverless computing has greatly simplified cloud
programming. In serverless computing, cloud
providers manage responsibility for all server-
related tasks, including both hardware resource al-
location and software runtime preparation. Cloud
tenants are thus free to simply focus on designing
discrete stateless functions and orchestrate them
together for their high-level business logic.

VM...

Container Engine

Container Container

FaaS Runtime FaaS Runtime

Function A Function B

Bare Metal Server

Virtual Machine

Cloud 
Provider

Tenants

Figure 1. Serverless computing.

ADVANTAGES OF SERVERLESS
Agile Auto-scaling: Cloud providers can quickly
launch new function instances in response to end-
users’ burst requests.

Usage-based Billing: Auto-scaled instances can
be quickly destroyed by cloud providers. Tenants
only pay for the actual function execution time, do
not need to reserve resources for burst requests.

Because of both efficiency and economic advantages,
serverless computing garners extensive attention
from industry and is expected to become the dom-
inant cloud computing paradigm.

QUIC PROTOCOL

ServerServerServerClient Client Client Server Client

(a) TCP 
Handshake

(b) TCP+TLS 1.2
Handshake

(C) QUIC 1-RTT
Handshake

(d) QUIC 0-RTT
Handshake

Scheme TCP TCP + TLS 1.2 QUIC 1-RTT QUIC 0-RTT

New Session 1 3 1 -

Recover Session 1 2 1 0

Figure 2. Extra round-trips in different protocols.

QUIC combines the advantages of TLS 1.3 and
UDP to provide a secure and reliable transport layer
under 0-RTT cost: the first encrypted packet can be
sent before any handshake round-trips occur.

FUNCTION CHAIN LIBRARY
Serverless applications can directly benefit from
QFaaS without any code modification. We fur-
ther provide a QFaaS function chain library and
integrate the QUIC server into Gateway to enable
QUIC at ➌|➏ with slight tenant code modification
(2 lines). Thus, all function chains invoked by the
library will benefit from QUIC. This design has a
side benefit. End-users now can also initiate re-
quests by QUIC and further accelerate ➊|➑.

NETWORK CHALLENGES IN SERVERLESS COMPUTING
Traditional Cloud Computing. Encrypting all internal connections is now the best practice. Though
initiating reliable transportation and encryption introduces extra delays, it is not the dominant bottleneck:

1. Transmission delay within the data center is negligible compared to execution times.
2. Connection setup latency of TCP and TLS can be simply mitigated by using persistent connections.

Network Paradigm Shift in Serverless Clouds. Nevertheless, leading commercial serverless providers
still use unencrypted TCP connections between internal serverless functions, sacrificing security for per-
formance. This is due to new constraints and demands imposed by serverless networking:

1. A function instance can be initialized in milliseconds and only processes a small sliver of the com-
putational task. The latency introduced by TCP and TLS handshakes can no longer be ignored.

2. With the scale-zero-to-infinity feature, function instances are quickly scaled up and down by cloud
providers. It is thus tough to maintain persistent connections between ephemeral functions.

3. As serverless functions are commonly chained together to form task-specific workflows, cumulative
handshakes aggravate the end-to-end latency.

Our Solution–QFaaS: Simultaneously improves performance and retrofits security of existing serverless
platforms without requiring any tenant code modification and by leveraging the QUIC protocol.

NETWORK MODELS FOR SERVERLESS ARCHITECTURE

API 
Gateway

End-User

1

8
Function
Invoker

Function B
Go-lang Runtime

Req Handler

W
o

rke
r 2

Function A
Python Runtime

Req Handler

W
o

rke
r

1

FA

FA FB

2 FA

7 FA FB

3 FB

6 FB

4 FB

5 FB

Gateway Workers

\
FD

API 
Gateway

Storage
Service

Task
Scheduler

Serverless Application

End-User

FC

FA FB

(a) Serverless Architecture in Logic View (b) Serverless Architecture in Network-centric View

: Functions : Backend Services: Events : Request : Response : Inner Channel
1 FA

8 FA

Figure 3. Serverless architecture: (a) widely used Logic Model vs. (b) Network-centric Model.

Connections from Gateway to workers (➋|➐, ➍|➎), which are fully controlled by providers, expose op-
portunities to optimize serverless networks without tenant code modification.

QFAAS SYSTEM DESIGN

Function A

Python Runtime

Request Handler
(REST-API HTTP Server)

Front-end API Gateway (REST-API HTTP Server)

QUIC Client   

QUIC Server

P
yt

h
o

n

Function Invoker (HTTP Client)Gateway
Containers

Fu
n

ct
io

n
 

C
o

n
ta

in
er

Function B

Go-lang Runtime

Request Handler
(REST-API HTTP Server)

QUIC Server

G
o

Fu
n

ct
io

n
 

C
o

n
ta

in
er

0-RTT Token Store

Figure 4. QFaaS system design.

We integrate the QUIC client in Gate-
way and QUIC servers in Request Han-
dlers (to replace the TCP and TLS client
and servers, respectively). All function
requests that go through Gateway to
Workers would now benefit from the ef-
ficiency and security of QUIC. Modifi-
cations on the serverless platform are
totally transparent to tenant applica-
tions. We implement the QFaaS proto-
type into OpenFaaS. The entire system
code will be made publicly available.

EXPERIMENT: SINGLE FUNCTION

0 0.5 1 1.5 2 2.5 3
Internal Delay (ms)

20

40

60

80

R
es

po
ns

e 
La

te
nc

y 
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 5. Latency under variant internal delays.

QFaaS can reduce the latency by up to 28% com-
pared with OpenFaaS (TLS+TCP). It even outper-
forms insecure OpenFaaS (TCP).

EXPERIMENT: FUNCTION CHAINS

1 2 3 4 5 6
Length of Function Chain

0

50

100

150

200

R
es

po
ns

e 
La

te
nc

y 
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 6. QFaaS with function chain library.

The latency difference between QFaaS and Open-
FaaS (TCP+TLS) increases as the chain length in-
creases and reaches 40% when the length is 6.


