
Poster: Accelerate and Secure Serverless Networks with QUIC
Kaiyu Hou†, Sen Lin†, Yan Chen†, Vinod Yegneswaran‡

† Northwestern University, ‡ SRI International, USA

CCS CONCEPTS
• Networks → Cloud computing; Transport protocols.

1 INTRODUCTION
In serverless computing [3], cloud providers manage responsibility
for all server-related tasks, including both hardware resource allo-
cation and software runtime preparation. Cloud tenants are thus
free to simply focus on designing discrete stateless functions and
orchestrate them together for their high-level business logic.

Agile auto-scaling is among the major allures of serverless com-
puting. Cloud providers can quickly launch new function instances
in response to end-user requests, while saving operational costs.
Since auto-scaled instances can be quickly destroyed by cloud
providers, tenants only pay for the actual function execution time
and do not need to reserve resources for burst requests. Because
of both efficiency and economic advantages, serverless computing
garners extensive attention from industry and is expected to be-
come the dominant cloud computing paradigm [3] with a market
share that is projected to surpass $21 Billion by 2025.

Fully encrypting all internal connections is now the best practice
for major cloud providers. Although initiating reliable transporta-
tion and encryption introduces extra delays, it is not the dominant
performance bottleneck in prior cloud computing: (𝑖) transmission
delay within the data center is negligible compared to execution
times; (𝑖𝑖) connection setup latency of TCP and TLS can be simply
mitigated by using persistent connections.

Nevertheless, many leading commercial serverless providers
still use unencrypted TCP connections between internal serverless
functions, sacrificing security for performance. This is due to new
challenges bred in the serverless networking scheme. (i) A function
instance can be initialized in milliseconds [1] and only processes a
small sliver of the computational task. The latency introduced by
TCP and TLS handshakes, even in the sub-millisecond-scale, can no
longer be ignored. (ii) With the scale-zero-to-infinity feature, func-
tion instances are quickly scaled up and down by cloud providers. It
is thus tough tomaintain persistent connections between ephemeral
functions. (iii) As serverless functions are commonly chained to-
gether to form task-specific workflows, cumulative handshakes
aggravate the end-to-end latency.

We present a novel solution based on the emerging QUIC pro-
tocol, called QFaaS. It can simultaneously improve performance
and provide security to existing serverless platforms without the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3493350

API
Gateway

End-User

1

8
Function
Invoker

Function B
Go-lang Runtime

Req Handler

W
o

rk 2

Function A
Python Runtime

Req Handler

W
o

rk 1

FA

FA FB

2 FA

7 FA FB

3 FB

6 FB

4 FB

5 FB

Gateway Workers

: Request : Response : Inner Channel
1 FA

8 FA

Figure 1: The network-centric model of serverless computing.

requirements of any tenant code modification. QUIC [2] is a new
transport protocol running over TLS 1.3 and UDP that has gained
popularity in the wide-area Internet. It combines the advantages
of both TLS 1.3 and UDP to provide a secure and reliable transport
layer under 0-RTT connection setup cost, i.e., the first data packet
can be sent before any handshake round-trips occur. Due to the
inherent advantages of reduced handshake costs while providing
a secure network, it is appealing to consider the extension of this
new protocol to solve this new challenge in serverless computing.

2 NETWORKING MODEL OF SERVERLESS
We first provide a new abstraction of the serverless architecture
through the network-centric view (Figure 1). It will guide our QFaaS
design. Serverless architecture is divided into two parts:
• Components in the gateway subsystem expose static function in-
terfaces to end-users, manage running workers, and dispatch re-
quests to corresponding functions. These services are all stateful
and run on permanent machines. In existing serverless platforms,
corresponding modules may have variant names. For example,
in AWS, they are called frontend and worker manager [1]. Re-
gardless of the names, they provide the same functionalities.

• Workers are ephemeral containers that comprise the request
handler, the function runtime, and tenant functions. The request
handler provides the internal communication ability for workers.
It receives trigger requests from the gateway and sends func-
tion results back to the gateway. The function runtime provides
isolated software stacks and programming language libraries to
execute tenant functions. Therefore, tenant functions are decou-
pled from the management of ingress network connections.
Figure 1 shows an example where an end-user requests function

F𝐴 , while F𝐴 chained together with F𝐵 provides the service:
• (➊|➑) the end-user sends F𝐴 a request (➊) and receives responses
of F𝐴 and F𝐵 (➑) from the connection with the API gateway.
In the process, the API gateway acts as a transport layer server.
Message flow details behind it are transparent to the end-user.

• (➋|➐) The API gateway forwards the F𝐴 trigger event to the
function invoker. After the F𝐴 worker container is initialized,
the function invoker sets a connection to the request handler in
F𝐴 worker, sends request data (➋), and receives responses (➐)

477

https://doi.org/10.1145/3485983.3493350

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Kaiyu Hou, Sen Lin, Yan Chen, Vinod Yegneswaran

Function A

Python Runtime

Request Handler
(REST-API HTTP Server)

Front-end API Gateway (REST-API HTTP Server)

QUIC Client

QUIC Server

P
yt

h
o

n

Function Invoker (HTTP Client)Gateway
Containers

Fu
n

ct
io

n

C
o

n
ta

in
er

Function B

Go-lang Runtime

Request Handler
(REST-API HTTP Server)

QUIC Server

G
o

Fu
n

ct
io

n

C
o

n
ta

in
er

0-RTT Token Store

Figure 2: The system design of QFaaS. Modifications on the serverless
platform are totally transparent to the tenants’ applications.

by this connection. In this process, the function invoker plays
the role of the transport layer client to initiate the connection.
The request handler plays the role of the transport layer server.

• (➌|➏) Following the business logic, F𝐴 needs the response of F𝐵 .
Nevertheless, instead of sending a request to a worker of F𝐵 , F𝐴
will send the request (➌) and receive responses of F𝐵 (➏) from
the API gateway. F𝐴 does not need to care about any scheduling
details of F𝐵 . In this process, the API gateway acts as a transport
layer server again, even though the connection is internal.

• (➍|➎) The function invoker initializes a worker for F𝐵 , sets up a
connection to its request handler, sends request data (➍), and
receives responses (➎) from this connection.

3 SYSTEM DESIGN AND EXPERIMENTS
3.1 QFaaS System Architecture
In our network-centric model, the communication channels from
the API gateway to the function invoker and request handlers to
language runtime could be persistent connections or internal IPCs.
The connection between end-users and the gateway (➊|➑) is ini-
tialized by end-users and could also be persistent connections. The
connection from the function to the gateway (➌|➏) is initialized by
functions. Therefore, the connections from the gateway to workers
(➋|➐ and ➍|➎), which are fully controlled by the provider, really
matter in the serverless network latency. First, we cannot simply
use persistent connections to mitigate the connection setup latency.
Second, this overhead will be multiplied when functions are chained
together or the number of running instances is quickly scaled up.

Figure 2 shows the system design of QFaaS. We integrate the
QUIC client in the gateway and the QUIC server in the worker
request handlers (to replace the TCP and TLS clients and servers,
respectively). All function requests that go through the gateway
to workers would now benefit from the efficiency and security of
QUIC. In serverless computing, all workers, as well as the code of
the gateway and request handlers, are provided and controlled by
cloud providers. Therefore, this modification is transparent to cloud
tenants and does not request any change to tenants’ function code.

The QUIC protocol 0-RTT mode uses the QUIC connection token
on the client side to resume fast connections. Since the gateway,
which is a stateful machine, plays the role of the QUIC client, it
can maintain and manage the QUIC connection token cache all
the time. Therefore, serverless applications under this design can
further benefit from the 0-RTT feature of QUIC.

Preliminary Experiments. We implemented the QFaaS proto-
type on the OpenFaaS platform. The network delay within a typical

0 0.5 1 1.5 2 2.5 3
Internal Delay (ms)

20

40

60

80

R
es

po
ns

e
La

te
nc

y
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 3: Latency under variant intra-cloud delays. QFaaS reduces 28%
single function latency. It even performs better than using only TCP.

1 2 3 4 5 6
Length of Function Chain

0

50

100

150

200

R
es

po
ns

e
La

te
nc

y
(m

s) OpenFaaS(TCP+TLS)
OpenFaaS(TCP)
QFaaS

Figure 4: Benefits of QFaaS with the function chain library. QFaaS is
40% faster than OpenFaaS (TCP+TLS) when the chain length is 6.

data center is around 0.5ms; the AWS intra-regional delay varies
from 1ms to 3ms. In both scenarios, our experiments (Figure 3)
show that QUIC can reduce the single function end-user response
latency by up to 28% compared with OpenFaaS using TLS and TCP.
It even performs better than OpenFaaS using only insecure TCP.

3.2 Function Chain Library
We cannot simply replace the connection initiated from the func-
tion to the gateway (➌|➏) with QUIC. Because this connection is
function code related and is also programming-language specific.
For example, AWS and OpenFaaS suggest Python developers form
function chains by using the Python Requests library.

We provide the QUIC-based function chain library to enable
QUIC at ➌|➏ with slight tenant code modification. This chain li-
brary has QUIC as its underline transport layer protocol. We also
integrate the QUIC server into the gateway. Thus, all function chain
traffic invoked by the library will benefit fromQUIC. The codemodi-
fication to adapt to it is minimal. For instance, the Python developers
only need to import the library and switch their Requests call to
the QFaaS chain library call, which are only 2 lines of code modifica-
tion. This design has a side benefit. End-users now can also initiate
requests by QUIC and further accelerate the ➊|➑ connection.

Preliminary Experiments. As shown in Figure 4, when the
intra-cloud delay is 0.5ms, the end-user response latency difference
between QFaaS and OpenFaaS (TCP+TLS) increases as the chain
length increases and reaches 40% when the length is 6.

REFERENCES
[1] Alexandru Agache et al. 2020. Firecracker: Lightweight virtualization for serverless

applications. In the 17th USENIX NSDI.
[2] IETF. 2021. QUIC: A UDP-Based Multiplexed and Secure Transport. RFC 9000.
[3] Eric Jonas et al. 2019. Cloud programming simplified: A berkeley view on serverless

computing. arXiv preprint, arXiv:1902.03383 (2019).

478

	1 Introduction
	2 Networking Model of Serverless
	3 System Design and experiments
	3.1 QFaaS System Architecture
	3.2 Function Chain Library

	References

