NETWORK PROTOCOL SAFE CONFIGURATION

Northwestern
University

INTRODUCTION

A large number of works done by networking
security researchers use model checking. Each of
the works comes with one or more formal models.
Nevertheless, we find these works do not fully ex-
ploit the potentials of their models.

Traditionally, researchers select a set of correct-
ness properties the protocol or system should fol-
low. If the model checker determines the proper-
ties are satisfied, one can conclude the protocol or
system is safe with regard to the properties. Of-
ten times, the researchers expect to find counterex-
amples, which suggest possible traces of attacks.
Regardless of their purposes, researchers always
choose a designated initial state, so their results
only apply to that specific initial state.

The above problem is a decision problem, given
the model, the initial state, and the properties.
However, networking protocols and systems are
highly complicated. There usually exist more than
one way to deploy. In that regard, we propose to
convert the decision problem into a search problem
given the model and the properties; the result is a
set of states which satisty the properties.

We call that set of states secure option space. It
has two-fold benefits. For designers, they want to
know in what circumstances their designs are se-
cure, especially when a design has multiple asyn-
chronized components.For deployment engineers,
they want to configure the systems to meet all se-
curity criteria and make sure the systems always
execute as expected, provided there are so many
configurable parameters and initial states for a net-
work system. In either case, no one will want to
enumerate all possible initial states, and run model
checker for each of them.

SEARCHIN ONESHOT

YOUu L1, KAiyu HOU, HAT ZHOU, YAN CHEN

PRELIMINARIES

A protocol or system can be formalized as a finite state transition system S : (i, 7, I(z), T(i, 7, x'))
consisting of input variables i, state variables z, initial state I(Z), and a transition relation T'(i, Z, z'): the
function of inputs i and current state T to determine the next state z/. A state s is an assignment of values
to all state variables . A state either satisfies a correctness property: s F P, or falsifies it: s  P.

Correctness properties can be divided into two categories: safety properties and liveness properties.

SECURE OPTION SPACE SEARCH FOR SAFETY PROPERTIES

Figure 1. An illustrative example of searching the secure option space for the safety property P. The
original initial state / lies in the P-space, but it is not secure as it can reach the —P-space. The greatest
inductive invariant, V3, is the secure option space we aim to find. Any state lies in /V3 is always
guaranteed to satisfy P. Note there exist other inductive invariants like V3, I'V5, IV} U I'V;, etc.

A safety property P states that bad things can never happen. For example, an unauthorized party
should not be allowed to broadcast fake alerts by abusing the wireless alert system. On a formal model,
it is equivalent to say that none of the bad states (—P-states) can be reached. Therefore, the problem of
searching a secure option space becomes searching for states which cannot lead to any bad states.

An assertion F' is an inductive invariant it ' AT = F’: there is no outgoing edges from F-states to
—F-states. Here is the key insight: if there exists an inductive invariant /™* which does not intersect with
the = P-space, all F'*-states are secure (Figure 1).

IC3 is the state-of-the-art symbolic model checking algorithm. It maintains a sequence of frames
Fy -+ Fy, in which F; AT = F] ;. Our search for the secure option space can benefit from the design
of the IC3: i) It will always return an inductive invariant F'* if exists. i1) After every iteration, a new frame
Fj41 <+ Pisproduced. Since only P-states can constitute the secure option space, the search for the secure
option space always starts from the largest possible candidate.

SECURE OPTION SPACE SEARCH FOR LIVENESS PROPERTIES
D ~C-Cycle

(2 Lasso-shaped Path

@ Inductive Invariant @ Inductive Invariants with and without 7C-Cycle

,\ SUPPPTTITIYTEE
@ @ \ “u.‘-...
‘ o o o
\‘ ]V3
@—C9-Co. S @9~ i
&
I

Figure 2. M A —C cycle, in which the condition C of the liveness property P is never satisfied. (2 The system is not secure as there exists a path from the
original initial state / to the —C-cycle. 3 Any potential ~C'-cycles outside of the inductive invariant /1" have no effect to the states within /V. @ V3 and
I'V; have a —C cycle in them, so they cannot be determined to be secure. /V; is a secure option space we aim to find.

A liveness property states that good things should eventually happen. For instance, a phone call to an emergency number should be eventually routed to a
public safety center. No livenesses can be satisfied if a system does not move forward; so livenesses are usually used in conjunction with fairness constraints.

Liveness properties can be refuted if there exists a lasso-shaped path starting from an initial state 7, and none of the states along that path satisfies the condition
of the liveness properties. A lasso-shaped path from [ is a path that has a cycle (Figure 2 D) and a connection from [ to any state on the cycle (Figure 2 ).

FAIR is an algorithm to find such paths we are looking for. It first queries the SAT solver for a group of states that satisfies a certain fairness condition. Then
it queries IC3 for a connection from the initial state to one of the states in the group. If that succeeds, the algorithm queries IC3 for multiple times to build a cycle
with the group of states. If all steps above succeed, FAIR finds a lasso-shaped counterexample. However, if any of the queries to IC3 fail, FAIR accumulates a
new inductive invariant returned by IC3. Notice that no cycle can go through a boundary depicted by an inductive invariant.

In order to find the secure option space with regard to liveness properties, we require the fairness condition to be that no states satisty the condition C' of the
liveness properties. That fairness condition applies to both the group-of-state queries and the connection queries. Then we can reach a key observation: if there
exists no such cycle within an inductive invariant, every state within that inductive invariant belongs to the secure option space. (Figure 2 @ and Figure 2 @)

CONCLUSION

We have implemented our algorithms for safety and liveness properties and tested them with synthetic models. Given any states, a SAT solver can determine

in one shot if they reside in a found secure option space. In the past, researchers make efforts to find vulnerabilities within systems. Then they mitigate those
vulnerabilities, hoping the systems can become more secure. Such a process could iterate forever. Our proposed method deals with this problem from the reverse
direction: efficiently searching for the states and configurations which must be secure. Protocol designers, deployment engineers could benefit from the method.

@ ACM SIGCOMM 2020 Posters & Demos



