
Network Protocol Safe Configuration Search in One Shot
You Li∗, Kaiyu Hou∗, Hai Zhou, Yan Chen

Northwestern University, USA

CCS CONCEPTS
•Networks→ Protocol correctness; Protocol testing and ver-
ification; • Security and privacy→ Logic and verification.

KEYWORDS
Network system configuration; Model checking; Protocol security

1 INTRODUCTION
Model checking techniques can verify correctness properties by
exhaustively traversing the state space of a formal model. A large
number of works [1, 4, 5] done by networking researchers use
model checking. Each of the works comes with one or more formal
models, which constitutes a valuable asset for the networking secu-
rity research community. Nevertheless, we find these works do not
fully exploit the potentials of their models.

A better way to extract more underlying information from those
models is to search for the secure option space: given a set of cor-
rectness properties, if the model executes from any state within the
secure option space, it is guaranteed these properties always hold.
Traditional model checkers cannot solve it, as their targeted goal
is to decide whether an instance of the model is safe with regard
to the given properties. Leveraging recent breakthroughs of sym-
bolic model checkers, we devise algorithms to search for the secure
option space. Moreover, the found results can be stored compactly
and queried efficiently. We have implemented prototypes of our
proposed algorithms and are testing them on existing models of
cellular network protocols.

2 MOTIVATION
A network protocol or system can be formalized as a finite state
transition system 𝑆 : (𝑖, 𝑥, 𝐼 (𝑥),𝑇 (𝑖, 𝑥, 𝑥 ′)) consisting of input vari-
ables 𝑖 , state variables 𝑥 , initial state 𝐼 (𝑥), and a transition relation
𝑇 (𝑖, 𝑥, 𝑥 ′): the function of inputs 𝑖 and current state 𝑥 to determine
the next state 𝑥 ′. A state 𝑠 is an assignment of values to all state
variables 𝑥 . A state either satisfies a correctness property: 𝑠 ⊨ 𝑃 , or
falsifies it: 𝑠 ⊭ 𝑃 .

Correctness properties can be divided into two categories: safety
properties and liveness properties. Safety properties state that some
bad things can never happen, while liveness properties state that
some good things should eventually happen.

Traditionally, after the model is specified, researchers select a
set of correctness properties the original protocol or system should
follow. If the model checker determines the properties are satisfied,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8048-5/20/08.
https://doi.org/10.1145/3405837.3411377

P P-Space ¬P-Space

¬P

¬P

S7

I
S8S1

S2
S3

IV1
S4

S5
IV2

¬P

S6

IV3
Secure
Option
Space

S9

Figure 1: An illustrative example of searching the secure option
space for the safety property 𝑃 . The original initial state 𝐼 lies in
the 𝑃-space, but it is not secure as it can reach the ¬𝑃-space. The
greatest inductive invariant, 𝐼𝑉3, is the secure option space we aim
to find. Any state lies in 𝐼𝑉3 is always guaranteed to satisfy 𝑃 . Note
there exist other inductive invariants like 𝐼𝑉1, 𝐼𝑉2, 𝐼𝑉1 ∪ 𝐼𝑉2, etc.

one can conclude the original protocol or system is safe with regard
to the properties. In the field of networking security, often times
the researchers expect to find counterexamples, because counterex-
amples suggest possible traces of attacks or other vulnerabilities.
Regardless of their purposes and methodologies, researchers always
choose a designated initial state, so their results only apply to that
specific initial state.

In abstract, the above problem is a decision problem given the
model, the initial state, and the correctness properties; the result is
either satisfy or falsify. Network protocols and systems are highly
complicated. There usually exist more than one way to deploy a
single network system. In that regard, we propose to convert the
decision problem into a search problem given the model and the
properties; the result is a set of states which satisfy the properties.

We call that set of states secure option space. The benefits of
finding the secure option space are two-fold. For designers, they
want to know in what circumstances their designs are secure, es-
pecially when a design has multiple asynchronized components,
keeps evolving over time, and has more than one contributing team.
It is desired by designers that the secure option space covers all use
cases and customer requirements. For deployment engineers, they
want to configure the systems to meet all security criteria and make
sure the systems always execute as expected, provided there are
so many configurable parameters and initial states for a network
system. In either case, no one will want to enumerate all possible
initial states, and run model checker for each of them.

We describe two symbolic model checking algorithms to search
secure option spaces for safely and liveness properties, respectively.

3 SECURE OPTION SPACE SEARCH FOR
SAFETY PROPERTIES

A safety property 𝑃 states that bad things can never happen. For
example, an unauthorized party should not be allowed to broadcast
fake alerts by abusing the wireless alert system. On a formal model,
it is equivalent to say that none of the bad states (¬𝑃-states) can be
reached. Therefore, the problem of searching a secure option space
becomes searching for states which cannot lead to any bad states.

An assertion 𝐹 is an inductive invariant if 𝐹 ∧𝑇 ⇒ 𝐹 ′: there is no
outgoing edges from 𝐹 -states to ¬𝐹 -states. Here is the key insight:

https://doi.org/10.1145/3405837.3411377


SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA You Li∗ , Kaiyu Hou∗ , Hai Zhou, Yan Chen

.	.	.
¬C

¬C

¬C

¬C

①	¬C-Cycle

¬C

¬C

¬C

¬C

I S1

②	Lasso-shaped	Path ④	Inductive	Invariants	with	and	without	¬C-Cycle

IV2IV1
¬C

¬C

¬C

¬C

S4

C
¬C S6

¬C

S5
C

IV3

Secure
Option
Space

I ¬C I ¬C

S1
S2

S3 IV

③	Inductive	Invariant

.	.	.

.	.	.

Figure 2: 1○A ¬𝐶 cycle, in which the condition𝐶 of the liveness property 𝑃 is never satisfied. 2○ The system is not secure as there exists a path
from the original initial state 𝐼 to the ¬𝐶-cycle. 3○ Any potential ¬𝐶-cycles outside of the inductive invariant 𝐼𝑉 have no effect to the states
within 𝐼𝑉 . 4○ 𝐼𝑉3 and 𝐼𝑉1 have a ¬𝐶 cycle in them, so they cannot be determined to be secure. 𝐼𝑉2 is a secure option space we aim to find.

if there exists an inductive invariant 𝐹 ∗ which does not intersect
with the ¬𝑃-space, all 𝐹 ∗-states are secure (Figure 1).

IC3 [2] is the state-of-the-art symbolic model checking algorithm.
IC3maintains a sequence of frames 𝐹1 · · · 𝐹𝑘 , in which 𝐹𝑖∧𝑇 ⇒ 𝐹 ′

𝑖+1.
During an iteration, if IC3 finds a path from an initial state to a
¬𝑃-state, IC3 will return the path as a counterexample; otherwise,
it strengthens any frame 𝐹𝑖 that have states violating 𝐹𝑖 ∧𝑇 ⇒ 𝐹 ′

𝑖+1.
After every iteration, if there exists an 𝐹𝑖 = 𝐹𝑖+1, the algorithm
returns 𝐹𝑖 as an inductive invariant and concludes the model is
secure from the initial states; otherwise, IC3 will produce a new
frame 𝐹𝑘+1 ← 𝑃 and continue to the next iteration.

Our search for the secure option space can benefit from the
design of the IC3 in the following two aspects: i) The algorithm will
always return an inductive invariant 𝐹 ∗ if it exists. ii) After every
iteration, a new frame 𝐹𝑘+1 ← 𝑃 is produced. Since only 𝑃-states
can constitute the secure option space, the search for the secure
option space always starts from the largest possible candidate, and
consequently tends to find a large such space.

The original IC3 algorithm has to be modified to fit our needs.
The search should not be depending on any specific initial states,
nor should it be interrupted by any found counterexamples. There-
fore, the initial condition is set to be False, meaning there are no
concrete initial states. However, as there are no initial states to
constrain abstraction, more states are eliminated from the frames.
The resulting inductive invariant would be small or even an empty
frame. To deal with this problem, we control the extent of gen-
eralization, so that in each iteration a border cube can only be
generalized to an extent proportional to its size.

Once an inductive invariant is found, we can expand its size
recursively by setting the found 𝐹 ∗ as 𝐹0 in the next execution of
the above algorithm to find a larger secure option space.

4 SECURE OPTION SPACE SEARCH FOR
LIVENESS PROPERTIES

A liveness property states that good things should eventually hap-
pen. For instance, a phone call to an emergency number should be
eventually routed to a public safety center. No liveness properties
can be satisfied if a system does not move forward; so liveness prop-
erties are usually used in conjunction with fairness constraints1.

Liveness properties can be refuted if there exists a lasso-shaped
path starting from an initial state 𝐼 , and none of the states along
that path satisfies the condition of the liveness properties. A lasso-
shaped path from 𝐼 is a path that has a cycle (Figure 2 1○) and a
connection from 𝐼 to any state on the cycle (Figure 2 2○).
1Strong Fairness: a process which is infinitely often enabled should be executed in-
finitely often. Weak Fairness: a process which is always enabled should be executed
infinitely often.

FAIR [3] is an algorithm to find such paths we are looking for.
It first queries the SAT solver for a group of states that satisfies a
certain fairness condition. Then it queries IC3 for a connection from
the initial state to one of the states in the group. If that succeeds, the
algorithm queries IC3 for multiple times to build a cycle with the
group of states. If all steps above succeed, FAIR finds a lasso-shaped
counterexample. However, if any of the queries to IC3 fail, FAIR
accumulates a new inductive invariant returned by IC3. Notice that
no cycle can go through a boundary depicted by an inductive in-
variant. FAIR should eventually terminate because it keeps refining
the state space with newly found inductive invariants.

In order to find the secure option space with regard to liveness
properties, we require the fairness condition to be that no states
satisfy the condition𝐶 of the liveness properties. That fairness con-
dition applies to both the group-of-state queries and the connection
queries. Then we can reach a key observation: if there exists no
such cycle within an inductive invariant, every state within that
inductive invariant belongs to the secure option space. Figure 2 3○
and Figure 2 4○ demonstrate this observation.

So, we can devise a search algorithm. First it randomly selects
some initial states and run the queries to accumulate a number of
inductive invariants. Then the algorithm selects a sufficiently large
inductive invariant, trying to find a fairness cycle within it. If no
such cycle can be found, that inductive invariant is joined with
the already found secure option space. If there is such a cycle, one
of the states on the cycle is recorded and used as a constraint for
future search, so that there will be no repeated efforts.

5 EXPERIMENTS ON CELLULAR NETWORKS
We have implemented our algorithms for safety and liveness prop-
erties and tested the algorithms with synthetic models. Given any
states, a SAT solver can determine in one shot if they reside in a
found secure option space.

At themeanwhile, we collected existingmodels [4, 5] which were
constructed to find vulnerabilities on cellular network protocols. An
especially large number of configurable and environment variables
exist in the cellular network system, as it is a combination of many
subsystems and has evolved significantly for many generations. We
built a pipeline to translate the original state transition relations
into the format which our programs can parse.

In the past, researchers make efforts to find vulnerabilities within
systems. Then they mitigate those vulnerabilities, hoping the sys-
tems can become more secure. Such a process could iterate forever.
Our proposed method deals with this problem from the reverse
direction: efficiently searching for the states and configurations
which must be secure. Protocol designers, deployment engineers,
as well as researchers, could benefit from the method.



Network Protocol Safe Configuration Search in One Shot SIGCOMM ’20 Demos and Posters, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] David Basin, Jannik Dreier, Lucca Hirschi, Saša Radomirovic, Ralf Sasse, and

Vincent Stettler. 2018. A formal analysis of 5G authentication. In 2018 ACM
SIGSAC Conference on Computer and Communications Security.

[2] Aaron Bradley. 2011. SAT-based model checking without unrolling. In 2011 In-
ternational Workshop on Verification, Model Checking, and Abstract Interpretation
(VMCAI). Springer.

[3] Aaron Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. 2011. An incremen-
tal approach to model checking progress properties. In 2011 Formal Methods in
Computer-Aided Design (FMCAD). IEEE.

[4] Syed Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa Bertino. 2018. LTEIn-
spector: A systematic approach for adversarial testing of 4G LTE. In the 25th
Network and Distributed Systems Security (NDSS) Symposium.

[5] Yinbo Yu, You Li, Kaiyu Hou, Yan Chen, Hai Zhou, and Jianfeng Yang. 2019.
CellScope: Automatically Specifying and Verifying Cellular Network Protocols. In
2019 SIGCOMM Conference Posters and Demos. ACM.


	1 Introduction
	2 Motivation
	3 Secure Option Space Search for Safety Properties
	4 Secure Option Space Search for Liveness Properties
	5 Experiments on Cellular Networks
	References

