WUHAN UNIVERSITY

INTRODUCTION

Towards a secure cellular network, researchers are
spending efforts to manually identify vulnerabili-
ties (human investigation). Such a practice demands
both time and patience. It is only suitable to be ap-
plied on a few procedures of large cellular network
protocols. Dynamic testing, on the other hand, in-
vokes test cases to check if the actual network be-
havior meets security criteria. It identifies vulnera-
bilities during execution. This approach, however,
depends on the quality of input test cases. As a
result, its completeness can never be proved.

The use of formal methods brings a systematic
and solid approach to cellular network security
research. Nevertheless, researchers have encoun-
tered a common and critical problem: specification.
Protocols of cellular network are documented in
natural languages. Human efforts are required to
convert them into formal models. Such manual-
crafted specifications are error-prone and only capa-

ble of describing small pieces of protocols.
Table 1: Existing methods vs. CellScope.

Methodology Generalizable | Trustworthy | Complete | Automated
Human investigation O ® O O
Dynamic testing [D) [D) O o
Manual specification (D) [D) O O
CellScope o [D) [] [J

Being different from existing methods, we present
CellScope, an automated framework for specify-
ing and verifying cellular network protocols based
on software model checking. With CellScope, we
aim to efficiently inspects cellular network proto-
cols in large scale.

CHALLENGE

e Size Explosion: The state space in an imple-
mentation of cellular network is too large for a
model checker. For instance, a prevailing open
source implementation of LTE, OpenAirInter-
face (OAI), has more than one million lines of
code.

e Independent software entity: There are mul-
tiple software entities (including User Equip-
ment, eNodeB, and the Core Network) run in-
dependently in a cellular network.

e Multi Agent Interaction: In the cellular net-
work, each of the entity is driven by messages
sent by each other. Such a model is neither a
sequential program, nor a classical multi-thread
program.

e Temporal Logic Checking: Software model
checkers focus on practical implementation is-
sues. To ensure the correctness of cellular net-
work protocols, more complex properties with
temporal logic is needed. For example, we need
to ensure that if a cell phone requests to attach
to the core network, it will succeed eventually.

CELLSCOPE

CellScope automatically extracts control flow
graph (CFG) from software implementations of
cellular network. We do optimization on CFGs for
model simplification and adversary injection. By
applying improved counter-example-guided ab-
straction refinement (CEGAR), CellScope inspects
cellular network protocols in large scale and val-
idates identified counterexample in a real cellular
network testbench.

CELLSCOPE: AUTOMATICALLY
SPECIFYING AND VERIFYING CELLULAR &
NETWORK PROTOCOLS

YINBO YU, YOU LI, KAIYU HOU, YAN CHEN, HAI ZHOU, JTIANFENG YANG

xAGpNs | dAg-

Northwestern
University

ARCHITECTURE
LTE
Source files
e gy SRR JEpE
| Compilation Property—driven I
| Slicing :
| l A '
| 1 |
' CFG Entity Composition '
I construction I
| \1, A '
[§ Event handler |
| u CEG Decomposition :
I
| »l/ A :
| Semantic Extraction
I CFG parser » I
I I
I I

Model Parser

Parser Frontend

The architecture of CellScope:

Security Properties

Verification Backend v |
Abg/’:?:cet:on > Verification :

T Counterexamplel :

. |

Retmement _[€ | Valaton |}
"""""""""" i ™

Channel model &
Adversaries

1. Parser Frontend: It automatically translates LTE source codes to formal models and instruments chan-
nel and adversary models into LTE models. By slicing the model depending on a property, it extracts a
small but sufficient model for verification with the property.

2. Verification Backend: we design a prioritized counterexample guided abstractionrefinement (I-
CEGAR) verification and model decomposition with weakest precondition. With this two techniques,
CellScope efficiently inspects cellular network protocols in large scale. Once a counterexample is iden-
tified, it will be validated on a real OAI testbed platform.

MESSAGE CHANNEL

[.
w
@ | |.|_ Adversary model
o N DI
r- -0 -== 1 -~ ~ . r- - -=== 1
: UE I - i ~ : CN |
I NAS P T LT ooy o{= > NAS |
. ! | cache cache |1 :
[|
4 |
: RRC ‘, Message channel :’ STAP \
______ 4 >4
e)
-l-» RRC [¢e=—»| S1AP 4-:-
1 eNB |
<€=P Abstracted eventhandler ‘l __L Insecure exchange €= Secure exchange == P> Attack injection

1. Mock up program behaviors in low layers;

2. Compose independent software entities with
formal message exchange models;

3. Enable the injection of Dolev-Yao-style adver-
saries into commmunication channel;

PROPERTY-DRIVEN SLICING

Property Adversary assumption

)

Slicing criteria

« Channel message
» Configurations
* Adversary variables

DECOMPOSING EVENT HANDLER

In the cellular network, there are multi-layer event
handlers to process messages from different enti-
ties, network layers, protocols, components, or en-
tity statuses. In software, these handlers are im-
plemented in a comprehensive manner to cover all
possibilities. These implementations, however, ex-
pose a large but unnecessary state space for model
checking.

—————

I_____________________'; r———-=-=-=-- '_Sl_iClng______; _l________‘\T___/'________-‘/3 ______ A
: 5 AR -
: Ll E o W D
| 4{?—‘\ L _.(.\o—& pe ! o || — ~__ - i—'
: I : o .\. I CBD
: Channel :: *e Channel : =) — o o o e e e .
& | & I
: - L, ee - | A />
I Adversari ENB I Adv | ! i !
: = ersaries i : = ersaries ENB | |/> Q_&\EQ: | | /> A1
i Before slicing ! i After slicing | i > !
PRILIMARY RESULTS
Vulnerability Adversary Attack Protocol Root cause New attack?
No EPS services Malicious eNB DoS NAS Malicious attach_reject Known
Forbidding PLMNs | Malicious eNB | DoS NAS Malicious attach_reject Yes
with #11 or 14 cause
Forbidding TAIs Malicious eNB DoS NAS Malicious attach_reject Yes
& with #12, 13 or 15 cause
Barring cells Malicious eNB DoS RRC Malicious SIBI with a Yes
cellBarred flag

@ ACM SIGCOMM 2019 Posters & Demos

