
CELLSCOPE: AUTOMATICALLY
SPECIFYING AND VERIFYING CELLULAR

NETWORK PROTOCOLS
YINBO YU, YOU LI, KAIYU HOU, YAN CHEN, HAI ZHOU, JIANFENG YANG

INTRODUCTION
Towards a secure cellular network, researchers are
spending efforts to manually identify vulnerabili-
ties (human investigation). Such a practice demands
both time and patience. It is only suitable to be ap-
plied on a few procedures of large cellular network
protocols. Dynamic testing, on the other hand, in-
vokes test cases to check if the actual network be-
havior meets security criteria. It identifies vulnera-
bilities during execution. This approach, however,
depends on the quality of input test cases. As a
result, its completeness can never be proved.
The use of formal methods brings a systematic
and solid approach to cellular network security
research. Nevertheless, researchers have encoun-
tered a common and critical problem: specification.
Protocols of cellular network are documented in
natural languages. Human efforts are required to
convert them into formal models. Such manual-
crafted specifications are error-prone and only capa-
ble of describing small pieces of protocols.

CellScope: Automatically Specifying and Verifying Cellular
Network Protocols

Yinbo Yu†‡, You Li‡, Kaiyu Hou‡, Yan Chen‡, Hai Zhou‡, and Jianfeng Yang†⇤
† School of Electronic Information, Wuhan University, China

‡ Department of Computer Science, Northwestern University, USA
{yyb,yjf}@whu.edu.cn,{youli,kyhou}@u.northwestern.edu,{ychen,haizhou}@northwestern.edu

CCS CONCEPTS
• Networks → Protocol correctness; Mobile and wireless secu-
rity; • Security and privacy → Logic and veri�cation.

KEYWORDS
Cellular network; protocol speci�cation and veri�cation; model
checking

1 INTRODUCTION
Towards a secure cellular network, researchers are spending e�orts
to manually identify vulnerabilities, e.g., [3] (here we call this ap-
proach as human investigation). Such a practice demands both time
and patience. It is only suitable to be applied on a few procedures
of large cellular network protocols. Dynamic testing [2], on the
other hand, invokes test cases to check if the actual behavior of the
network meets security criteria. It identi�es vulnerabilities during
execution. This approach, however, is depending on the quality of
input test cases. As a result, its completeness can never be proved.

The use of formal methods brings a systematic and solid ap-
proach to cellular network security research [1, 4]. Nevertheless,
researchers have encountered a common and critical problem: spec-
i�cation. Protocols of cellular network are documented in natural
languages. Lots of human e�orts are required to convert protocols
into formal models. Such manual-crafted speci�cations are error-
prone and only capable of describing small pieces of protocols.

Being di�erent from existing methods (see Table 1), CellScope
automatically extracts formal models of cellular network protocols
from software implementations. By applying improved counter-
example-guided abstraction re�nement (CEGAR), CellScope e�-
ciently inspects cellular network protocols in large scale.

Three major challenges are posed to our CellScope framework.
First, there are multiple software entities run independently in a
cellular network. Therefore, we setup software message channels to
deliver plain messages. Second, the state space in an implementation
of cellular network is too large for a model checker. For instance, a
prevailing open source implementation of LTE, OpenAirInterface
*Jianfeng Yang (yjf@whu.edu.cn) is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6886-5/19/08. . . $15.00
https://doi.org/10.1145/3342280.3342294

Table 1: Existing methods vs. CellScope.
Methodology Generalizable Trustworthy Complete Automated
Human investigation # # #
Dynamic testing G# G# G#
Manual speci�cation G# G# G# G#
CellScope G#

Figure 1: The architecture of CellScope.

(OAI), has more than one million lines of code. We abstract low-layer
protocols and build straightforward message channels between
high-layer protocols. Program slicing is then applied to pruning
program states according to used properties. Third, general purpose
software model checkers cannot fully exploit information from
speci�cation. We �gure out ways to exchange information between
the frontend and the backend, such that the veri�cation process
can be accelerated.

In summary, we present our speci�cation and veri�cation frame-
work, CellScope (shown in Figure 1), for exploiting design �aws
in cellular network protocols. CellScope consists two major com-
ponents: a parser frontend and a veri�cation backend. The parser
frontend automatically translates LTE source code to formal models
and instruments channel and adversary models into LTE models. By
slicing the model depending on a property, CellScope performs the
CEGAR-based veri�cation backend on it. Once a counterexample
is identi�ed, it will be validated on a real OAI testbed platform.

2 AUTOMATED SPECIFICATION
A cellular network has three major entities: user equipment (UE),
base station (eNB), and core network (CN). We model each entity
as a control �ow automata (CFA). A CFA consists of (1) integer
variables, (2) control locations with start and exit points, and (3)
directed edges between locations. It is used in veri�cation backend
as the formal speci�cation. Leveraging a program-understanding
tool, CodeSurfer, along with code compilers, CellScope extracts

Being different from existing methods, we present
CellScope, an automated framework for specify-
ing and verifying cellular network protocols based
on software model checking. With CellScope, we
aim to efficiently inspects cellular network proto-
cols in large scale.

CHALLENGE
• Size Explosion: The state space in an imple-

mentation of cellular network is too large for a
model checker. For instance, a prevailing open
source implementation of LTE, OpenAirInter-
face (OAI), has more than one million lines of
code.

• Independent software entity: There are mul-
tiple software entities (including User Equip-
ment, eNodeB, and the Core Network) run in-
dependently in a cellular network.

• Multi Agent Interaction: In the cellular net-
work, each of the entity is driven by messages
sent by each other. Such a model is neither a
sequential program, nor a classical multi-thread
program.

• Temporal Logic Checking: Software model
checkers focus on practical implementation is-
sues. To ensure the correctness of cellular net-
work protocols, more complex properties with
temporal logic is needed. For example, we need
to ensure that if a cell phone requests to attach
to the core network, it will succeed eventually.

CELLSCOPE
CellScope automatically extracts control flow

graph (CFG) from software implementations of
cellular network. We do optimization on CFGs for
model simplification and adversary injection. By
applying improved counter-example-guided ab-
straction refinement (CEGAR), CellScope inspects
cellular network protocols in large scale and val-
idates identified counterexample in a real cellular
network testbench.

ARCHITECTURE

LTE
Source files

Parser Frontend

CFG
construction

Verification Backend

Validation

Model
Abstraction Verification

Precision
Refinement

LTE testbench

Counterexample

Vulnerability report

Security Properties

CFGsCFGsCFG

Spurious

Practical

Channel model &
Adversaries

Property-driven
Slicing

Semantic Extraction

Entity Composition

Event handler
Decomposition

CFG parser

Compilation

Model Parser

CFA

The architecture of CellScope:

1. Parser Frontend: It automatically translates LTE source codes to formal models and instruments chan-
nel and adversary models into LTE models. By slicing the model depending on a property, it extracts a
small but sufficient model for verification with the property.

2. Verification Backend: we design a prioritized counterexample guided abstractionrefinement (P-
CEGAR) verification and model decomposition with weakest precondition. With this two techniques,
CellScope efficiently inspects cellular network protocols in large scale. Once a counterexample is iden-
tified, it will be validated on a real OAI testbed platform.

MESSAGE CHANNEL

Adversary modelAdversary model

NAS

RRC

NAS

S1AP

RRC S1AP

UE

eNB

CN

Insecure exchange Secure exchangeAbstracted event handler

Message channel

cache

Adversary model

cache

Attack injection

1. Mock up program behaviors in low layers;
2. Compose independent software entities with

formal message exchange models;
3. Enable the injection of Dolev-Yao-style adver-

saries into commmunication channel;

DECOMPOSING EVENT HANDLER

…..

…
..

...

…..

…..

…..

…..

...

In the cellular network, there are multi-layer event
handlers to process messages from different enti-
ties, network layers, protocols, components, or en-
tity statuses. In software, these handlers are im-
plemented in a comprehensive manner to cover all
possibilities. These implementations, however, ex-
pose a large but unnecessary state space for model
checking.

PROPERTY-DRIVEN SLICING

Channel
&

Adversaries
UE

ENB

Before slicing

ENB
UE

Channel
&

Adversaries

After slicing

Property Adversary assumption

Slicing criteria

• Channel message
• Configurations
• Adversary variables
• …

Slicing

P-CEGAR
I

C

AI

I

I

𝐴"#

𝐴"$

R
efinem

ent

PRILIMARY RESULTS

SIGCOMM ’19, August 19–23, 2019, Beijing, China Y. Yu et al.

Table 1: results.
Vulnerability Adversary Attack Protocol Root cause New attack?
No EPS services Malicious eNB DoS NAS Malicious attach_reject Known

Forbidding PLMNs Malicious eNB DoS NAS Malicious attach_reject
with #11 or 14 cause Yes

Forbidding TAIs Malicious eNB DoS NAS Malicious attach_reject
with #12, 13 or 15 cause Yes

Barring cells Malicious eNB DoS RRC Malicious SIB1 with a
cellBarred �ag Yes

variables, (2) control locations with start and exit points, and (3)
directed edges between locations. It is used in veri�cation backend
as the formal speci�cation. Leveraging a program-understanding
tool, CodeSurfer, along with code compilers, CellScope extracts
CFGs from source code. Then, it uses our implemented CFG parser
to translate CFGs to CFAs.

2.1 Model Construction
Entities in the cellular network run independently. To facilitate
model checking, we design a software message channel for message
exchange between entities and for fusing the entities together. We
focus on detailed procedures in protocols above the link layer (e.g.,
NAS, RRC, and S1AP), while we abstract the protocol stack below
that layer. With such a channel, CellScope can construct a complete
yet simpli�ed model for the whole cellular network.

As shown in Figure 2, our message channel model has two func-
tionalities. First, the channel is built to simplify message exchange.
Messages are encoded and exchanged between event handlers either
within an entity (through multi-thread interface calls) or between
entities (through physical signals). To facilitate model checking, the
channel caches plain text message instead of bitstreams generated
by one handler. The message is then translated as an input to the
target handlers. Second, the channel is used to express adversarial
behavior. We consider a Dolev-Yao-style adversary in the channel
model with the following capabilities: it can drop or modify message
in the channel or impersonate one legitimate participant to inject
messages into the channel. These capabilities are implemented with
operations on message caches and message exchanges in channels.

2.2 Property-driven Slicing
CellScope focuses on interactions among three major entities in
RRC and NAS layer protocols. In that sense, it sets the slicing
criteria to be a set of program instructions that send and receive
messages. To reduce the sizes of the models, we design a property-
driven slicing approach. Our approach slices models guided by each
individual property to be checked by our veri�cation backend.

Depending on the speci�c property, the slicing criteria used by
CellScope may include con�gurations of entities, messages appear
in protocols, and delivery instructions in between protocols and
entities. Starting from each slicing criteria, CellScope performs
backward slicing and tracks both intra-process and inter-process, as
well as inter-entity. The more precise the slicing is, the more states it
can prune statically. Nevertheless, to avoid false positives in model
checking, CellScope performs an over-approximated slicing instead
of precise point-to analysis. Avoiding the very expensive point-to
analysis makes it possible for CellScope to prune the system model
for each individual property.

figure/channel_model.pdf

Figure 2: Message channel model.

3 FORMAL VERIFICATION
A major challenge in formal veri�cation is the scalability problem:
the model checker may not be able to terminate when the model
gets large. This problem is more severe, as our model is extracted
from a largest software. To address this challenge, we propose two
new techniques: prioritized counterexample guided abstraction
re�nement (P-CEGAR) and model decomposition with weakest
precondition.

3.1 P-CEGAR
As the original concrete model could be too complex to handle,
in CEGAR, a sound yet incomplete abstract model is built. If the
abstract model is safe, the concrete model should also be safe. How-
ever, when a counterexample is found on the abstract model, it is
either feasible on the concrete model, or a spurious example due
to a high abstraction level. Therefore, CEGAR further re�nes the
abstract model by generating new predicates to rule out the current
spurious example. A number of heuristics have designed to gener-
ate predicates. Unfortunately, because the speci�cation is usually
written by humans, none of the heuristics are using any knowledge
in addition to the explicit model itself.

As a united platform, CellScope is able to share knowledge in
between its speci�cation and veri�cation parts. Particularly, when
constructing CFAs, CellScope distinguishes protocol related variables

