SoftRing: Taming the Reactive Model for Software Defined Networks

Chengchen Hu, **Kaiyu Hou**, Hao Li, Ruilong Wang Peng Zheng, Peng Zhang, Huanzhao Wang

> MOE KLINNS Lab Xi'an Jiaotong University

Match-Action Abstraction

• Software Defined Networking (SDN) employs a *Match-Action* model as processing abstraction

- A packet: 1) match a rule in switches
 - 2 execute the related actions
 - Forward, Drop, Modify
- Flow entry stored in Flow Table

Proactive vs. Reactive

Proactive

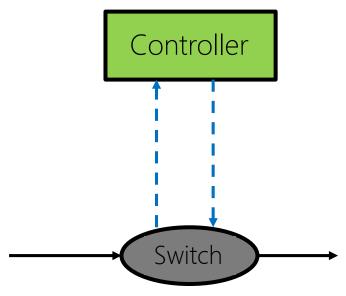
- Pre-install flow entry in switches
- Anticipate the network issues in advance

Reactive

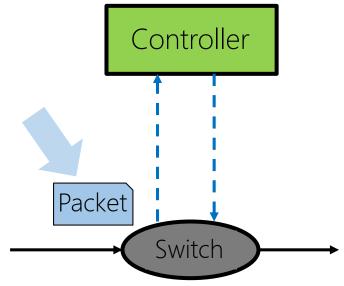
- Switches invoke the controller on network event
- Controller pushes corresponding flow entry

Proactive Model Only?

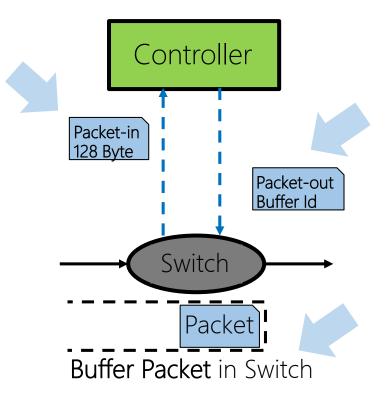
- Limited flow entry memory in switch
 - TCAM, up to 5000~ flow entries
 - Limited flexibility, finer-grained control


- Unawareness of data plane
 - Controller cannot be aware of failures
 - Flow entry removed: bugs, attacks
 - Continuously drop packets

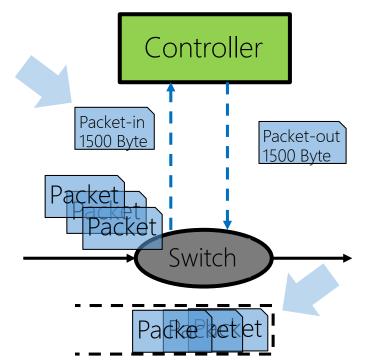
Overhead in Reactive

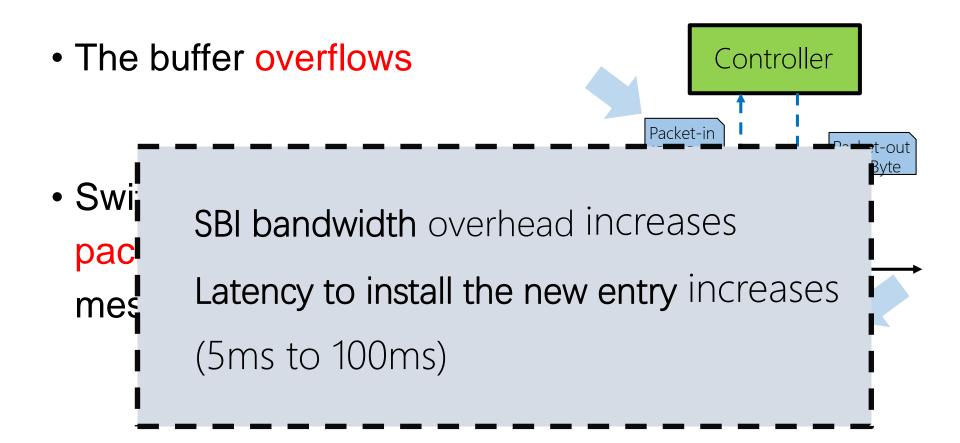

 Reactive introduces communicate overhead between controller and switches (South-Bound Interface)

- Table-miss event
 - One common trigger of reactive
 - Example: OpenFlow


- New incoming packet doesn't match any flow entry
 - Raise a Table-miss event

Switch buffers the packet


- Sends a *Packet-in* message to controller
 - first 128 bytes of the packet



• The buffer overflows

 Switch has to send the entire packet through the *Packet-in* message

When Does Reactive Happen?

- 1 Small flows come successively.
 - 20% traffic occupies 80% of total flows.

2 Limited flow entry memory, replacement

- E.g., LRU Policy
- Subsequent packets of TCP can trigger Table-miss

3 Subsequent packets also trigger Table-miss

• Before related new rule installed

Where to buffer the Table-miss packet?

Keep in Switch

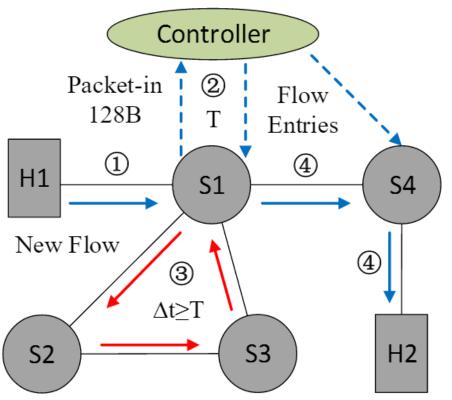
Model Port Buffer		Buffer	Control BW
AS7712-32X	100GbE*32	16MB	1000Mbps
ICX7750-26Q	40GbE*26	12.2MB	1000Mbps
Z9100-ON	100GbE*32	16MB	1000Mbps
CE8860	100GbE*32	16MB	N/A
M5300-52G	48+10GbE*4	4MB	10Gbps
	AS7712-32X ICX7750-26Q Z9100-ON CE8860	AS7712-32X 100GbE*32 ICX7750-26Q 40GbE*26 Z9100-ON 100GbE*32 CE8860 100GbE*32	AS7712-32X 100GbE*32 16MB ICX7750-26Q 40GbE*26 12.2MB Z9100-ON 100GbE*32 16MB CE8860 100GbE*32 16MB

• Buffer overflow: new flow exceeds 0.26% of switch capacity

Send to Controller

 Only 0.06% of the traffic consume all the control bandwidth

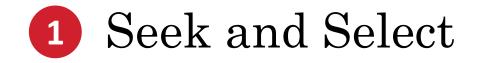
Goal of SoftRing


Popular Restaurant Policy

Popular restaurant cannot have enough tables to serve everyone ("table-miss") Waiters: record the customer. arrange a waiting number Customers: walk away and back later when the seat availability.

Basic Idea

- Extend loops in network
- Remaining bandwidth and memory in dataplane
 - Internet: > 50%
 - Data Center: > 75%
- Accurate control of packet
 forwarding


Three Challenges

Seek and Select waiting-loops

2 Enforce waiting-loop policy in switches

3 Dynamically adjust waiting-loops

Loop Seeking Algorithm

(collect enough loops as waiting-loop candidate)

Loop Selection Algorithm

(select a loop subset to cover all the switches)

Loop Seeking Algorithm

- Based on Johnson's loop searching algorithm
 - Directed graph
- Accelerate
 - Graph partition
 - Loop length and scale control
 - Random shuffle
- Virtual Loop
 - $v1 \rightarrow v2 \rightarrow ... \rightarrow v2 \rightarrow v1$

Waiting-loop Candidate Set

18

Loop Selection Algorithm

- Select a loop subset to meet the requirements:
 - Cover all the switches
 - Minimize the extra delay
 - Bandwidth in Data Plane
 - Minimize the extra flow entries Λ

• Map to weighted set cover problem

$$0 \le a_j L_j - T \le \alpha$$

 $\bigcup_{i=1}^{|S|} V_i = \mathbf{V}$

$$C_i = \sum_{i} a_j I_{ij}$$

$$N_i = \sum_j I_{ij}$$

	Priority	Match	Action	Timeout
OpenFlow	0	*	 Buffer Table-miss packet in switch Send Packet-in with 128 Bytes 	0

	Priority	Match	Action	Timeout
OpenFlow	0	*	 Buffer Table-miss packet in switch Send Packet-in with 128 Bytes 	0
ES (Entry Switch)	0	*	 Send Packet-in with 128 Bytes Push VLAN = 1 Send to next switch by queue 	0

✓ VLAN tag: distinguish waiting-loop packet

	Priority	Match	Action	Timeout
OpenFlow	0	*	 Buffer Table-miss packet in switch Send Packet-in with 128 Bytes 	0
ES (Entry Switch)	0	*	 Send Packet-in with 128 Bytes Push VLAN = 1 	0
			④ Send to next switch by queue	
LS (Loop Switch)	1	VLAN = 1 in-port = pre-switch	② Send to next Switch by queue	0

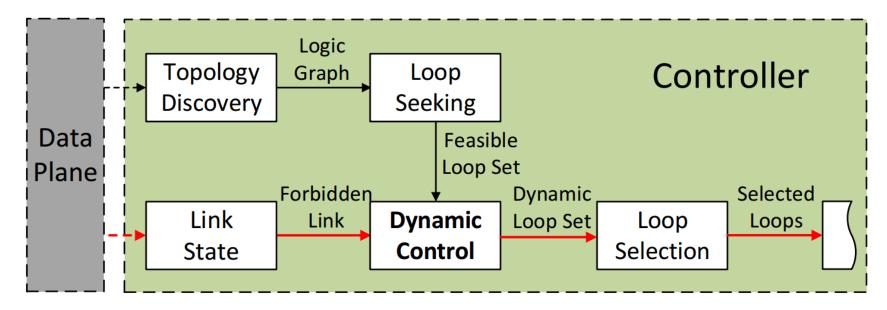
✓ VLAN tag: distinguish waiting-loop packet

✓ Priority: never affect normal traffic

	Priority	Match	Action	Timeout
OpenFlow	0	*	 Buffer Table-miss packet in switch Send Packet-in with 128 Bytes 	0
ES (Entry Switch)	0	*	 Send Packet-in with 128 Bytes Push VLAN = 1 Set TTL = β Send to next switch by queue 	0
LS (Loop Switch)	1	VLAN = 1 in-port = pre-switch	① Set TTL = TTL -1 ② Send to next Switch by queue	0

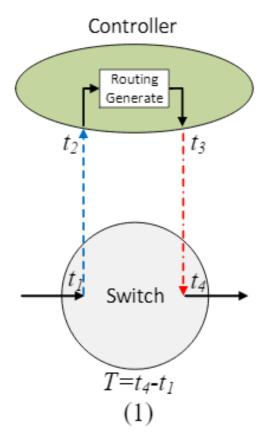
✓ VLAN tag: distinguish waiting-loop packet

- ✓ Priority: never affect normal traffic
- TTL: avoid endless loop

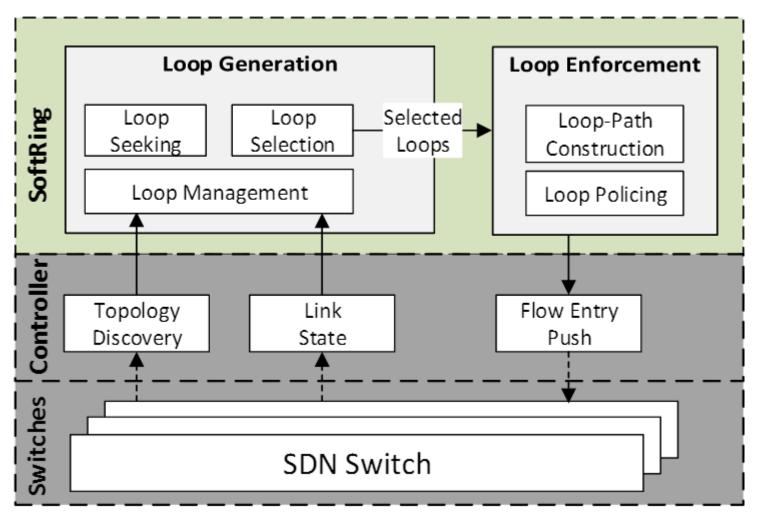


Controller-to-Switch Message: OpenFlow

Туре	Priority	Match/Data Field	Action	Timeout
Packet-out	/	Buffer ID or Entire Packet	Forwarding	/
Flow-add	>2	<i>ip_src ip_dst</i> etc.	Forwarding	normal
	Control	er-to-Switch Messa	ge: SoftRing	
Туре	Priority	Match/Data Field	Action	Timeout
Flow-add	>2	VLAN = None <i>ip_src ip_dst</i> etc.	Forwarding	normal
Flow-add	>2	VLAN = 1 <i>ip_src ip_dst</i> etc.	 Pop VLAN Reset TTL Forwarding 	short
23				安交通大学 JIAOTONG UNIVERSIT


3 Handling the Dynamic

- Forbidden Link: overloaded or failed links
- Re-execute: Only Loop Selection Algorithm (< 1s)



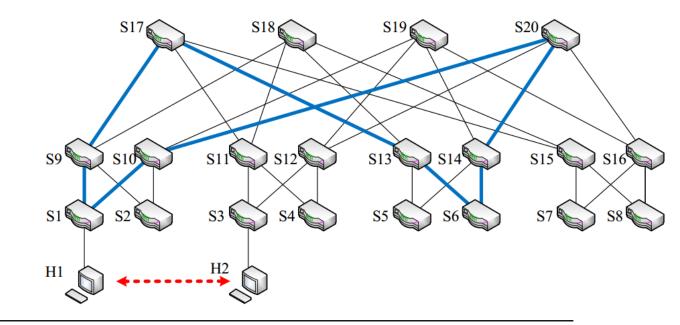
3 Handling the Dynamic

SoftRing: Implementation



SoftRing: Implementation

Fattree(4) with 20 ONetSwitch


- Controller:
 - Floodlight
- Switch:

- Open vSwitch: Software Switch
- ONetSwitch 30: Hardware Switch

SoftRing: Implementation

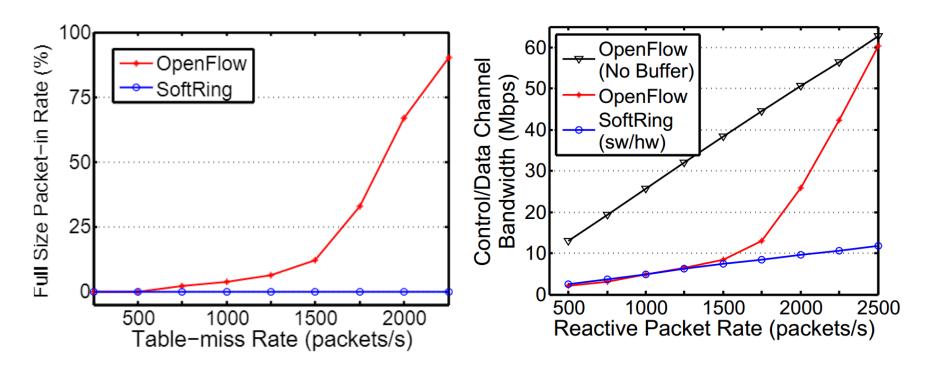
Loop ID		Switch ID							Loop Length
1	1	10	20	14	6	13	17	9	8
2	2	9	17	13	5	14	19	10	8
3	3	12	19	16	8	15	18	11	8
4	4	11	18	15	7	16	20	12	8

Evaluation

			•
	Topology	#Switch	#Link
	BCube (1,4)	24	32
	BCube (2,6)	324	648
	BCube (3,8)	6,144	16,384
Data Contar	DCell (1,4)	25	30
Data Center	DCell (2,6)	2170	3,612
Topology	DCell (2,8)	5,913	10,512
	Fattree (4)	20	32
	Fattree (8)	80	256
	Fattree (32)	1,280	16,384
	Stanford	26	46
Internet	CERNET	41	39
Topology	KDL	754	899
	CAIDA	10,827	37,734

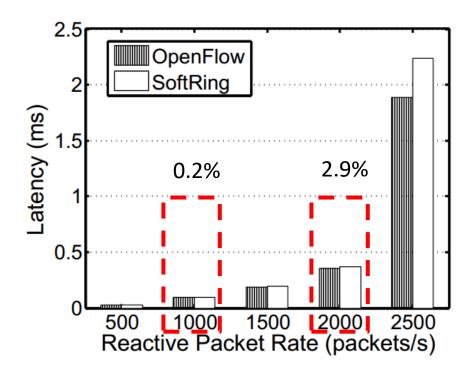
Evaluation

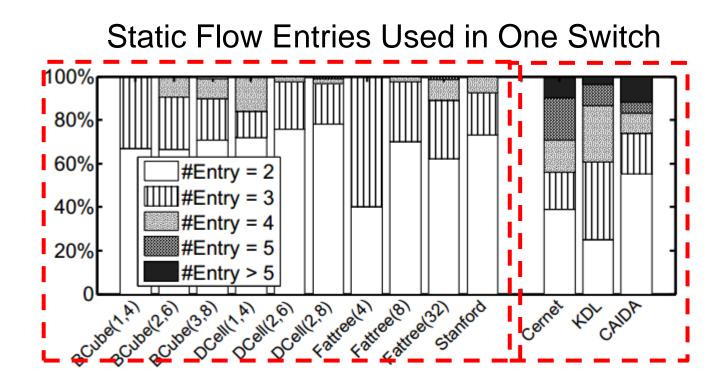
Topology	Time	(s)	#1.000	#Flow
юроюду	Seeking	Selection	#Loop	Entry
BCube (1,4)	0	0	4	2.3
BCube (2,6)	0.81	0.43	58	2.4
BCube (3,8)	122	81.3	1077	2.4
DCell (1 , 4)	0	0	4	2.4
DCell (2 , 6)	2.02	3.11	304	2.3
DCell (2 , 8)	12	32.3	816	2.3
Fattree (4)	0	0.01	4	2.6
Fattree (8)	0.03	0.01	14	2.3
Fattree (32)	6.49	2.89	208	2.5
Stanford	0.01	0	5	2.3
CERNET*	0	0	3	2.7
KDL*	0.12	0.02	62	3.3
CAIDA*	2,160	84.8	4,097	4.6


- 100% Coverage,
 - Virtual Loop used in last three topology

Evaluation

Tapalagy	Time	e (s)	#1.000	#Flow
Topology	Seeking	Selection	#Loop	Entry
BCube (1,4)	0	0	4	2.3
BCube (2,6)	0.81	0.43	58	2.4
BCube (3,8)	122	81.3	1077	2.4
DCell (1,4)	0	0	4	2.4
DCell (2 , 6)	2.02	3.11	304	2.3
DCell (2 , 8)	12	32.3	816	2.3
Fattree (4)	0	0.01	4	2.6
Fattree (8)	0.03	0.01	14	2.3
Fattree (32)	6.49	2.89	208	2.5
Stanford	0.01	0	5	2.3
CERNET*	0	0	3	2.7
KDL*	0.12	0.02	62	3.3
CAIDA*	2,160	84.8	4,097	4.6




Cost of SoftRing

Average Packet Delay in Different Reactive Packet Rate

Cost of SoftRing

34

Conclusion

Claim We advocate the coexistence of proactive model and reactive model.

SoftRing A reactive packet goes through a pre-computed waiting-loop before get related rules from controller.

Evaluation Reduce the control channel bandwidth up to 80%. With the cost of 3 flow entries, minor latency.

Thank You

Questions ?

